Chapter 2

Divide-and-conquer algorithms

The divide-and-conquer strategy solves a problem by:

1. Breaking it into subproblems that are themselves smaller instances of the same type of problem
2. Recursively solving these subproblems
3. Appropriately combining their answers

The real work is done piecemeal, in three different places: in the partitioning of problems into subproblems; at the very tail end of the recursion, when the subproblems are so small that they are solved outright; and in the gluing together of partial answers. These are held together and coordinated by the algorithm’s core recursive structure.

As an introductory example, we’ll see how this technique yields a new algorithm for multiplying numbers, one that is much more efficient than the method we all learned in elementary school!

2.1 Multiplication

The mathematician Carl Friedrich Gauss (1777–1855) once noticed that although the product of two complex numbers
\[(a + bi)(c + di) = ac - bd + (bc + ad)i\]
seems to involve four real-number multiplications, it can in fact be done with just three: \(ac, bd,\) and \((a + b)(c + d),\) since
\[bc + ad = (a + b)(c + d) - ac - bd.\]

In our big-\(O\) way of thinking, reducing the number of multiplications from four to three seems wasted ingenuity. But this modest improvement becomes very significant when applied recursively.
Let’s move away from complex numbers and see how this helps with regular multiplication. Suppose \(x \) and \(y \) are two \(n \)-bit integers, and assume for convenience that \(n \) is a power of 2 (the more general case is hardly any different). As a first step toward multiplying \(x \) and \(y \), split each of them into their left and right halves, which are \(n/2 \) bits long:

\[
\begin{align*}
 x &= \overline{x_L} \overline{x_R} = 2^{n/2}x_L + x_R \\
 y &= \overline{y_L} \overline{y_R} = 2^{n/2}y_L + y_R.
\end{align*}
\]

For instance, if \(x = 10110110_2 \) (the subscript \(2 \) means “binary”) then \(x_L = 1011_2 \), \(x_R = 0110_2 \), and \(x = 2^{n/2}x_L + x_R \). The product of \(x \) and \(y \) can then be rewritten as

\[
xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_Ly_L + 2^{n/2} (x_Ly_R + x_Ry_L) + x_Ry_R.
\]

We will compute \(xy \) via the expression on the right. The additions take linear time, as do the multiplications by powers of 2 (which are merely left-shifts). The significant operations are the four \(n/2 \)-bit multiplications, \(x_Ly_L \), \(x_Ly_R \), \(x_Ry_L \), \(x_Ry_R \); these we can handle by four recursive calls. Thus our method for multiplying \(n \)-bit numbers starts by making recursive calls to multiply these four pairs of \(n/2 \)-bit numbers (four subproblems of half the size), and then evaluates the preceding expression in \(O(n) \) time. Writing \(T(n) \) for the overall running time on \(n \)-bit inputs, we get the recurrence relation

\[
T(n) = 4T(n/2) + O(n).
\]

We will soon see general strategies for solving such equations. In the meantime, this particular one works out to \(O(n^2) \), the same running time as the traditional grade-school multiplication technique. So we have a radically new algorithm, but we haven’t yet made any progress in efficiency. How can our method be sped up?

This is where Gauss’s trick comes to mind. Although the expression for \(xy \) seems to demand four \(n/2 \)-bit multiplications, as before just three will do: \(x_Ly_L, x_Ly_R, x_Ry_L \), \(x_Ry_R \); since \(x_Ly_R + x_Ry_L = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R \). The resulting algorithm, shown in Figure 2.1, has an improved running time of\(^1\)

\[
T(n) = 3T(n/2) + O(n).
\]

The point is that now the constant factor improvement, from 4 to 3, occurs at every level of the recursion, and this compounding effect leads to a dramatically lower time bound of \(O(n^{1.59}) \).

This running time can be derived by looking at the algorithm’s pattern of recursive calls, which form a tree structure, as in Figure 2.2. Let’s try to understand the shape of this tree. At each successive level of recursion the subproblems get halved in size. At the \((\log_2 n)^{th} \) level,

\[^1\text{Actually, the recurrence should read } T(n) \leq 3T(n/2 + 1) + O(n) \]

since the numbers \((x_L + x_R)\) and \((y_L + y_R)\) could be \(n/2 + 1 \) bits long. The one we’re using is simpler to deal with and can be seen to imply exactly the same big-\(O\) running time.

The subproblems get down to size 1, and so the recursion ends. Therefore, the height of the tree is \(\log_2 n \). The branching factor is 3—each problem recursively produces three smaller ones—with the result that at depth \(k \) in the tree there are \(3^k \) subproblems, each of size \(n/2^k \).

For each subproblem, a linear amount of work is done in identifying further subproblems and combining their answers. Therefore the total time spent at depth \(k \) in the tree is

\[
3^k \times O\left(\frac{n}{2^k}\right) = \left(\frac{3}{2}\right)^k \times O(n).
\]

At the very top level, when \(k = 0 \), this works out to \(O(n) \). At the bottom, when \(k = \log_2 n \), it is \(O(3^{\log_2 n}) \), which can be rewritten as \(O(n^{\log_2 3}) \) (do you see why?). Between these two endpoints, the work done increases geometrically from \(O(n) \) to \(O(n^{\log_2 3}) \), by a factor of \(3/2 \) per level. The sum of any increasing geometric series is, within a constant factor, simply the last term of the series: such is the rapidity of the increase (Exercise 0.2). Therefore the overall running time is \(O(n^{\log_2 3}) \), which is about \(O(n^{1.59}) \).

In the absence of Gauss’s trick, the recursion tree would have the same height, but the branching factor would be 4. There would be \(4^{\log_2 n} = n^2 \) leaves, and therefore the running time would be at least this much. In divide-and-conquer algorithms, the number of subproblems translates into the branching factor of the recursion tree; small changes in this coefficient can have a big impact on running time.

A practical note: it generally does not make sense to recurse all the way down to 1 bit. For most processors, 16- or 32-bit multiplication is a single operation, so by the time the numbers get into this range they should be handed over to the built-in procedure.

Finally, the eternal question: Can we do better? It turns out that even faster algorithms for multiplying numbers exist, based on another important divide-and-conquer algorithm: the fast Fourier transform, to be explained in Section 2.6.
2.2 Recurrence relations

Divide-and-conquer algorithms often follow a generic pattern: they tackle a problem of size n by recursively solving, say, a subproblems of size n/b and then combining these answers in $O(n^d)$ time, for some $a, b, d > 0$ (in the multiplication algorithm, $a = 3$, $b = 2$, and $d = 1$). Their running time can therefore be captured by the equation $T(n) = aT(\lceil n/b \rceil) + O(n^d)$. We next derive a closed-form solution to this general recurrence so that we no longer have to solve it explicitly in each new instance.

Master theorem\(^2\) If $T(n) = aT(\lceil n/b \rceil) + O(n^d)$ for some constants $a > 0$, $b > 1$, and $d \geq 0$,

\(^2\)There are even more general results of this type, but we will not be needing them.
Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

Then

$$T(n) = \begin{cases}
O(n^d) & \text{if } d > \log_b a \\
O(n^d \log n) & \text{if } d = \log_b a \\
O(n^{\log_b a}) & \text{if } d < \log_b a .
\end{cases}$$

This single theorem tells us the running times of most of the divide-and-conquer procedures we are likely to use.

Proof. To prove the claim, let’s start by assuming for the sake of convenience that n is a power of b. This will not influence the final bound in any important way—after all, n is at most a multiplicative factor of b away from some power of b (Exercise 2.2)—and it will allow us to ignore the rounding effect in $\lfloor n/b \rfloor$.

Next, notice that the size of the subproblems decreases by a factor of b with each level of recursion, and therefore reaches the base case after $\log_b n$ levels. This is the height of the recursion tree. Its branching factor is a, so the kth level of the tree is made up of a^k subproblems, each of size n/b^k (Figure 2.3). The total work done at this level is

$$a^k \times O\left(\frac{n}{b^k}\right)^d = O(n^d) \times \left(\frac{a}{b^d}\right)^k .$$

As k goes from 0 (the root) to $\log_b n$ (the leaves), these numbers form a geometric series with
ratio \(a/b^d \). Finding the sum of such a series in big-O notation is easy (Exercise 0.2), and comes down to three cases.

1. **The ratio is less than 1.**
 Then the series is decreasing, and its sum is just given by its first term, \(O(n^d) \).

2. **The ratio is greater than 1.**
 The series is increasing and its sum is given by its last term, \(O(n \log_b a) \):
 \[
 n^d \left(\frac{a}{b^d} \right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{(b^{\log_b n})^d} \right) = a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a}.
 \]

3. **The ratio is exactly 1.**
 In this case all \(O(\log n) \) terms of the series are equal to \(O(n^d) \).

These cases translate directly into the three contingencies in the theorem statement.

Binary search

The ultimate divide-and-conquer algorithm is, of course, **binary search**: to find a key \(k \) in a large file containing keys \(z[0, 1, \ldots, n-1] \) in sorted order, we first compare \(k \) with \(z[n/2] \), and depending on the result we recurse either on the first half of the file, \(z[0, \ldots, n/2-1] \), or on the second half, \(z[n/2, \ldots, n-1] \). The recurrence now is \(T(n) = T([n/2]) + O(1) \), which is the case \(a = 1, b = 2, d = 0 \). Plugging into our master theorem we get the familiar solution: a running time of just \(O(\log n) \).

2.3 Mergesort

The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer strategy: split the list into two halves, recursively sort each half, and then **merge** the two sorted sublists.

```plaintext
function mergesort(a[1\ldots n])
Input:  An array of numbers a[1\ldots n]
Output: A sorted version of this array

if n > 1:
    return merge(mergesort(a[1\ldots[n/2]]), mergesort(a[[n/2]+1\ldots n]))
else:
    return a
```

The correctness of this algorithm is self-evident, as long as a correct **merge** subroutine is specified. If we are given two sorted arrays \(x[1\ldots k] \) and \(y[1\ldots l] \), how do we efficiently merge them into a single sorted array \(z[1\ldots k+l] \)? Well, the very first element of \(z \) is either \(x[1] \) or \(y[1] \), whichever is smaller. The rest of \(z[-] \) can then be constructed recursively.
Figure 2.4 The sequence of merge operations in mergesort.

Input: \[10 \ 2 \ 5 \ 3 \ 7 \ 13 \ 1 \ 6\]

```
function merge(x[1...k], y[1...l])
if k = 0:    return y[1...l]
if l = 0:    return x[1...k]
if x[1] ≤ y[1]:
    return x[1] o merge(x[2...k], y[1...l])
else:
    return y[1] o merge(x[1...k], y[2...l])
```

Here \(\circ\) denotes concatenation. This merge procedure does a constant amount of work per recursive call (provided the required array space is allocated in advance), for a total running time of \(O(k + l)\). Thus merge's are linear, and the overall time taken by mergesort is

\[
T(n) = 2T(n/2) + O(n),
\]

or \(O(n \log n)\).

Looking back at the mergesort algorithm, we see that all the real work is done in merging, which doesn’t start until the recursion gets down to singleton arrays. The singletons are merged in pairs, to yield arrays with two elements. Then pairs of these 2-tuples are merged, producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesort might be made iterative. At any given moment, there is a set of “active” arrays—initially, the singletons—which are merged in pairs to give the next batch of active arrays. These arrays can be organized in a queue, and processed by repeatedly removing two arrays from the front of the queue, merging them, and putting the result at the end of the queue.
In the following pseudocode, the primitive operation \texttt{inject} adds an element to the end of the queue while \texttt{eject} removes and returns the element at the front of the queue.

\begin{verbatim}
function iterative-mergesort(a[1..n])
Input: elements a_1, a_2, \ldots, a_n to be sorted

$Q = []$ (empty queue)
for $i = 1$ to n:
 inject($Q, [a_i]$)
while $|Q| > 1$:
 inject($Q, merge(eject(Q), eject(Q))$)
return eject(Q)
\end{verbatim}
An $n \log n$ lower bound for sorting

Sorting algorithms can be depicted as trees. The one in the following figure sorts an array of three elements, a_1, a_2, a_3. It starts by comparing a_1 to a_2 and, if the first is larger, compares it with a_3; otherwise it compares a_2 and a_3. And so on. Eventually we end up at a leaf, and this leaf is labeled with the true order of the three elements as a permutation of 1, 2, 3. For example, if $a_2 < a_1 < a_3$, we get the leaf labeled “2 1 3.”

The depth of the tree—the number of comparisons on the longest path from root to leaf, in this case 3—is exactly the worst-case time complexity of the algorithm.

This way of looking at sorting algorithms is useful because it allows one to argue that mergesort is optimal, in the sense that $\Omega(n \log n)$ comparisons are necessary for sorting n elements.

Here is the argument: Consider any such tree that sorts an array of n elements. Each of its leaves is labeled by a permutation of $\{1, 2, \ldots, n\}$. In fact, every permutation must appear as the label of a leaf. The reason is simple: if a particular permutation is missing, what happens if we feed the algorithm an input ordered according to this same permutation? And since there are $n!$ permutations of n elements, it follows that the tree has at least $n!$ leaves.

We are almost done: This is a binary tree, and we argued that it has at least $n!$ leaves. Recall now that a binary tree of depth d has at most 2^d leaves (proof: an easy induction on d). So, the depth of our tree—and the complexity of our algorithm—must be at least $\log(n!)$.

And it is well known that $\log(n!) \geq c \cdot n \log n$ for some $c > 0$. There are many ways to see this. The easiest is to notice that $n! \geq (n/2)^{(n/2)}$ because $n! = 1 \cdot 2 \cdot \ldots \cdot n$ contains at least $n/2$ factors larger than $n/2$; and to then take logs of both sides. Another is to recall Stirling’s formula

$$n! \approx \sqrt{\pi} \left(2n + \frac{1}{3}\right) \cdot n^n \cdot e^{-n}.$$

Either way, we have established that any comparison tree that sorts n elements must make, in the worst case, $\Omega(n \log n)$ comparisons, and hence mergesort is optimal!

Well, there is some fine print: this neat argument applies only to algorithms that use comparisons. Is it conceivable that there are alternative sorting strategies, perhaps using sophisticated numerical manipulations, that work in linear time? The answer is yes, under certain exceptional circumstances: the canonical such example is when the elements to be sorted are integers that lie in a small range (Exercise 2.20).
2.4 Medians

The median of a list of numbers is its 50th percentile: half the numbers are bigger than it, and half are smaller. For instance, the median of [45, 1, 10, 30, 25] is 25, since this is the middle element when the numbers are arranged in order. If the list has even length, there are two choices for what the middle element could be, in which case we pick the smaller of the two, say.

The purpose of the median is to summarize a set of numbers by a single, typical value. The mean, or average, is also very commonly used for this, but the median is in a sense more typical of the data: it is always one of the data values, unlike the mean, and it is less sensitive to outliers. For instance, the median of a list of a hundred 1’s is (rightly) 1, as is the mean. However, if just one of these numbers gets accidentally corrupted to 10,000, the mean shoots up above 100, while the median is unaffected.

Computing the median of n numbers is easy: just sort them. The drawback is that this takes $O(n \log n)$ time, whereas we would ideally like something linear. We have reason to be hopeful, because sorting is doing far more work than we really need—we just want the middle element and don’t care about the relative ordering of the rest of them.

When looking for a recursive solution, it is paradoxically often easier to work with a more general version of the problem—for the simple reason that this gives a more powerful step to recurse upon. In our case, the generalization we will consider is selection.

Selection

Input: A list of numbers S; an integer k

Output: The kth smallest element of S

For instance, if $k = 1$, the minimum of S is sought, whereas if $k = \lfloor |S|/2 \rfloor$, it is the median.

A randomized divide-and-conquer algorithm for selection

Here’s a divide-and-conquer approach to selection. For any number v, imagine splitting list S into three categories: elements smaller than v, those equal to v (there might be duplicates), and those greater than v. Call these S_L, S_v, and S_R respectively. For instance, if the array

$$S : \begin{array}{ccccccccccc}
2 & 36 & 5 & 21 & 8 & 13 & 11 & 20 & 5 & 4 & 1
\end{array}$$

is split on $v = 5$, the three subarrays generated are

$$S_L : \begin{array}{ccc}
2 & 4 & 1
\end{array} \quad S_v : \begin{array}{cc}
5 & 5
\end{array} \quad S_R : \begin{array}{ccccccccccc}
36 & 21 & 8 & 13 & 11 & 20
\end{array}$$

The search can instantly be narrowed down to one of these sublists. If we want, say, the eighth-smallest element of S, we know it must be the third-smallest element of S_R since $|S_L| + |S_v| = 5$. That is, $\text{selection}(S,8) = \text{selection}(S_R,3)$. More generally, by checking k against the sizes of the subarrays, we can quickly determine which of them holds the desired element:

$$\text{selection}(S,k) = \begin{cases}
\text{selection}(S_L,k) & \text{if } k \leq |S_L| \\
v & \text{if } |S_L| < k \leq |S_L| + |S_v| \\
\text{selection}(S_R,k - |S_L| - |S_v|) & \text{if } k > |S_L| + |S_v|.
\end{cases}$$
The three sublists $S_L, S_v, \text{ and } S_R$ can be computed from S in linear time; in fact, this computation can even be done in place, that is, without allocating new memory (Exercise 2.15). We then recurse on the appropriate sublist. The effect of the split is thus to shrink the number of elements from $|S|$ to at most $\max\{|S_L|, |S_R|\}$.

Our divide-and-conquer algorithm for selection is now fully specified, except for the crucial detail of how to choose v. It should be picked quickly, and it should shrink the array substantially, the ideal situation being $|S_L|, |S_R| \approx \frac{1}{2}|S|$. If we could always guarantee this situation, we would get a running time of

$$T(n) = T(n/2) + O(n),$$

which is linear as desired. But this requires picking v to be the median, which is our ultimate goal! Instead, we follow a much simpler alternative: we pick v randomly from S.

Efficiency analysis

Naturally, the running time of our algorithm depends on the random choices of v. It is possible that due to persistent bad luck we keep picking v to be the largest element of the array (or the smallest element), and thereby shrink the array by only one element each time. In the earlier example, we might first pick $v = 36$, then $v = 21$, and so on. This worst-case scenario would force our selection algorithm to perform

$$n + (n - 1) + (n - 2) + \cdots + \frac{n}{2} = \Theta(n^2)$$

operations (when computing the median), but it is extremely unlikely to occur. Equally unlikely is the best possible case we discussed before, in which each randomly chosen v just happens to split the array perfectly in half, resulting in a running time of $O(n)$. Where, in this spectrum from $O(n)$ to $\Theta(n^2)$, does the average running time lie? Fortunately, it lies very close to the best-case time.

To distinguish between lucky and unlucky choices of v, we will call v **good** if it lies within the 25th to 75th percentile of the array that it is chosen from. We like these choices of v because they ensure that the sublists S_L and S_R have size at most three-fourths that of S (do you see why?), so that the array shrinks substantially. Fortunately, good v’s are abundant: half the elements of any list must fall between the 25th to 75th percentile!

Given that a randomly chosen v has a 50% chance of being good, how many v’s do we need to pick on average before getting a good one? Here’s a more familiar reformulation (see also Exercise 1.34):

Lemma On average a fair coin needs to be tossed two times before a “heads” is seen.

Proof. Let E be the expected number of tosses before a heads is seen. We certainly need at least one toss, and if it’s heads, we’re done. If it’s tails (which occurs with probability 1/2), we need to repeat. Hence $E = 1 + \frac{1}{2}E$, which works out to $E = 2$. ■
Therefore, after two split operations on average, the array will shrink to at most three-fourths of its size. Letting $T(n)$ be the expected running time on an array of size n, we get

$$T(n) \leq T(3n/4) + O(n).$$

This follows by taking expected values of both sides of the following statement:

Time taken on an array of size n
$$\leq \text{(time taken on an array of size } 3n/4 \text{)} + \text{(time to reduce array size to } \leq 3n/4\text{),}$$

and, for the right-hand side, using the familiar property that the expectation of the sum is the sum of the expectations.

From this recurrence we conclude that $T(n) = O(n)$: on any input, our algorithm returns the correct answer after a linear number of steps, on the average.

The Unix sort command

Comparing the algorithms for sorting and median-finding we notice that, beyond the common divide-and-conquer philosophy and structure, they are exact opposites. Mergesort splits the array in two in the most convenient way (first half, second half), without any regard to the magnitudes of the elements in each half; but then it works hard to put the sorted sub-arrays together. In contrast, the median algorithm is careful about its splitting (smaller numbers first, then the larger ones), but its work ends with the recursive call.

Quicksort is a sorting algorithm that splits the array in exactly the same way as the median algorithm; and once the subarrays are sorted, by two recursive calls, there is nothing more to do. Its worst-case performance is $\Theta(n^2)$, like that of median-finding. But it can be proved (Exercise 2.24) that its average case is $O(n \log n)$; furthermore, empirically it outperforms other sorting algorithms. This has made quicksort a favorite in many applications—for instance, it is the basis of the code by which really enormous files are sorted.

2.5 Matrix multiplication

The product of two $n \times n$ matrices X and Y is a third $n \times n$ matrix $Z = XY$, with (i,j)th entry

$$Z_{ij} = \sum_{k=1}^{n} X_{ik}Y_{kj}.$$

To make it more visual, Z_{ij} is the dot product of the ith row of X with the jth column of Y:

![Matrix multiplication diagram]
In general, XY is not the same as YX; matrix multiplication is not commutative.

The preceding formula implies an $O(n^3)$ algorithm for matrix multiplication: there are n^2 entries to be computed, and each takes $O(n)$ time. For quite a while, this was widely believed to be the best running time possible, and it was even proved that in certain models of computation no algorithm could do better. It was therefore a source of great excitement when in 1969, the German mathematician Volker Strassen announced a significantly more efficient algorithm, based upon divide-and-conquer.

Matrix multiplication is particularly easy to break into subproblems, because it can be performed blockwise. To see what this means, carve X into four $n/2 \times n/2$ blocks, and also Y:

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}.$$

Then their product can be expressed in terms of these blocks and is exactly as if the blocks were single elements (Exercise 2.11).

$$XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}.$$

We now have a divide-and-conquer strategy: to compute the size-n product XY, recursively compute eight size-$n/2$ products $AE, BG, AF, BH, CE, DG, CF, DH$, and then do a few $O(n^2)$-time additions. The total running time is described by the recurrence relation

$$T(n) = 8T(n/2) + O(n^2).$$

This comes out to an unimpressive $O(n^3)$, the same as for the default algorithm. But the efficiency can be further improved, and as with integer multiplication, the key is some clever algebra. It turns out XY can be computed from just seven $n/2 \times n/2$ subproblems, via a decomposition so tricky and intricate that one wonders how Strassen was ever able to discover it!

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

where

$$
\begin{align*}
P_1 &= A(F - H) \\
P_2 &= (A + B)H \\
P_3 &= (C + D)E \\
P_4 &= D(G - E) \\
P_5 &= (A + D)(E + H) \\
P_6 &= (B - D)(G + H) \\
P_7 &= (A - C)(E + F)
\end{align*}$$

The new running time is

$$T(n) = 7T(n/2) + O(n^2),$$

which by the master theorem works out to $O(n^{\log_2 7}) \approx O(n^{2.81})$.
2.6 The fast Fourier transform

We have so far seen how divide-and-conquer gives fast algorithms for multiplying integers and matrices; our next target is polynomials. The product of two degree-d polynomials is a polynomial of degree $2d$, for example:

$$(1 + 2x + 3x^2) \cdot (2 + x + 4x^2) = 2 + 5x + 12x^2 + 11x^3 + 12x^4.$$

More generally, if $A(x) = a_0 + a_1x + \cdots + a_dx^d$ and $B(x) = b_0 + b_1x + \cdots + b_dx^d$, their product $C(x) = A(x) \cdot B(x) = c_0 + c_1x + \cdots + c_{2d}x^{2d}$ has coefficients

$$c_k = a_0b_k + a_1b_{k-1} + \cdots + a_kb_0 = \sum_{i=0}^{k} a_i b_{k-i}$$

(for $i > d$, take a_i and b_i to be zero). Computing c_k from this formula takes $O(k)$ steps, and finding all $2d + 1$ coefficients would therefore seem to require $\Theta(d^2)$ time. Can we possibly multiply polynomials faster than this?

The solution we will develop, the fast Fourier transform, has revolutionized—indeed, defined—the field of signal processing (see the following box). Because of its huge importance, and its wealth of insights from different fields of study, we will approach it a little more leisurely than usual. The reader who wants just the core algorithm can skip directly to Section 2.6.4.
Why multiply polynomials?

For one thing, it turns out that the fastest algorithms we have for multiplying integers rely heavily on polynomial multiplication; after all, polynomials and binary integers are quite similar—just replace the variable x by the base 2, and watch out for carries. But perhaps more importantly, multiplying polynomials is crucial for signal processing.

A signal is any quantity that is a function of time (as in Figure (a)) or of position. It might, for instance, capture a human voice by measuring fluctuations in air pressure close to the speaker's mouth, or alternatively, the pattern of stars in the night sky, by measuring brightness as a function of angle.

In order to extract information from a signal, we need to first digitize it by sampling (Figure (b))—and, then, to put it through a system that will transform it in some way. The output is called the response of the system:

$$
\text{signal} \rightarrow \text{SYSTEM} \rightarrow \text{response}
$$

An important class of systems are those that are linear—the response to the sum of two signals is just the sum of their individual responses—and time invariant—shifting the input signal by time t produces the same output, also shifted by t. Any system with these properties is completely characterized by its response to the simplest possible input signal: the unit impulse $\delta(t)$, consisting solely of a “jerk” at $t = 0$ (Figure (c)). To see this, first consider the close relative $\delta(t - i)$, a shifted impulse in which the jerk occurs at time i. Any signal $a(t)$ can be expressed as a linear combination of these, letting $\delta(t - i)$ pick out its behavior at time i,

$$a(t) = \sum_{i=0}^{T-1} a(i) \delta(t - i)$$

(if the signal consists of T samples). By linearity, the system response to input $a(t)$ is determined by the responses to the various $\delta(t - i)$. And by time invariance, these are in turn just shifted copies of the impulse response $b(t)$, the response to $\delta(t)$.

In other words, the output of the system at time k is

$$c(k) = \sum_{i=0}^{k} a(i) b(k - i),$$

exactly the formula for polynomial multiplication!
2.6.1 An alternative representation of polynomials

To arrive at a fast algorithm for polynomial multiplication we take inspiration from an important property of polynomials.

Fact A degree-d polynomial is uniquely characterized by its values at any $d + 1$ distinct points.

A familiar instance of this is that “any two points determine a line.” We will later see why the more general statement is true (page 76), but for the time being it gives us an alternative representation of polynomials. Fix any distinct points x_0, \ldots, x_d. We can specify a degree-d polynomial $A(x) = a_0 + a_1 x + \cdots + a_dx^d$ by either one of the following:

1. Its coefficients a_0, a_1, \ldots, a_d
2. The values $A(x_0), A(x_1), \ldots, A(x_d)$

Of these two representations, the second is the more attractive for polynomial multiplication. Since the product $C(x)$ has degree $2d$, it is completely determined by its value at any $2d + 1$ points. And its value at any given point z is easy enough to figure out, just $A(z)$ times $B(z)$. Thus polynomial multiplication takes linear time in the value representation.

The problem is that we expect the input polynomials, and also their product, to be specified by coefficients. So we need to first translate from coefficients to values—which is just a matter of evaluating the polynomial at the chosen points—then multiply in the value representation, and finally translate back to coefficients, a process called interpolation.

<table>
<thead>
<tr>
<th>Coefficient representation</th>
<th>Evaluation</th>
<th>Value representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0, a_1, \ldots, a_d</td>
<td></td>
<td>$A(x_0), A(x_1), \ldots, A(x_d)$</td>
</tr>
</tbody>
</table>

Interpolation

Figure 2.5 presents the resulting algorithm.

The equivalence of the two polynomial representations makes it clear that this high-level approach is correct, but how efficient is it? Certainly the selection step and the n multiplications are no trouble at all, just linear time. But (leaving aside interpolation, about which we know even less) how about evaluation? Evaluating a polynomial of degree $d \leq n$ at a single point takes $O(n)$ steps (Exercise 2.29), and so the baseline for n points is $\Theta(n^2)$. We’ll now see that the fast Fourier transform (FFT) does it in just $O(n \log n)$ time, for a particularly clever choice of x_0, \ldots, x_{n-1} in which the computations required by the individual points overlap with one another and can be shared.

\(^3\)In a typical setting for polynomial multiplication, the coefficients of the polynomials are real numbers and, moreover, are small enough that basic arithmetic operations (adding and multiplying) take unit time. We will assume this to be the case without any great loss of generality; in particular, the time bounds we obtain are easily adjustable to situations with larger numbers.
Figure 2.5 Polynomial multiplication

Input: Coefficients of two polynomials, $A(x)$ and $B(x)$, of degree d
Output: Their product $C = A \cdot B$

Selection
Pick some points $x_0, x_1, \ldots, x_{n-1}$, where $n \geq 2d + 1$

Evaluation
Compute $A(x_0), A(x_1), \ldots, A(x_{n-1})$ and $B(x_0), B(x_1), \ldots, B(x_{n-1})$

Multiplication
Compute $C(x_k) = A(x_k)B(x_k)$ for all $k = 0, \ldots, n-1$

Interpolation
Recover $C(x) = c_0 + c_1x + \cdots + c_{2d}x^{2d}$

2.6.2 Evaluation by divide-and-conquer

Here’s an idea for how to pick the n points at which to evaluate a polynomial $A(x)$ of degree $\leq n - 1$. If we choose them to be positive-negative pairs, that is,$$
\pm x_0, \pm x_1, \ldots, \pm x_{n/2-1},
$$
then the computations required for each $A(x_i)$ and $A(-x_i)$ overlap a lot, because the even powers of x_i coincide with those of $-x_i$.

To investigate this, we need to split $A(x)$ into its odd and even powers, for instance
$$3 + 4x + 6x^2 + 2x^3 + x^4 + 10x^5 = (3 + 6x^2 + x^4) + x(4 + 2x^2 + 10x^4).$$

Notice that the terms in parentheses are polynomials in x^2. More generally,
$$A(x) = A_e(x^2) + xA_o(x^2),$$

where $A_e(\cdot)$, with the even-numbered coefficients, and $A_o(\cdot)$, with the odd-numbered coefficients, are polynomials of degree $\leq n/2 - 1$ (assume for convenience that n is even). Given *paired* points $\pm x_i$, the calculations needed for $A(x_i)$ can be recycled toward computing $A(-x_i)$:

$$A(x_i) = A_e(x_i^2) + x_iA_o(x_i^2)$$
$$A(-x_i) = A_e(x_i^2) - x_iA_o(x_i^2).$$

In other words, evaluating $A(x)$ at n paired points $\pm x_0, \ldots, \pm x_{n/2-1}$ reduces to evaluating $A_e(x)$ and $A_o(x)$ (which each have half the degree of $A(x)$) at just $n/2$ points, $x_0^2, \ldots, x_{n/2-1}^2$.

Evaluate:
\[A(x) \text{ degree } \leq n - 1 \]
\[\text{at: } +x_0 -x_0 +x_1 -x_1 \ldots +x_{n/2-1} -x_{n/2-1} \]

Equivalently, evaluate:
\[A_e(x) \text{ and } A_o(x) \text{ degree } \leq n/2 - 1 \]
\[\text{at: } x_0^2 x_1^2 \ldots x_{n/2-1}^2 \]

The original problem of size \(n \) is in this way recast as two subproblems of size \(n/2 \), followed by some linear-time arithmetic. If we could recurse, we would get a divide-and-conquer procedure with running time
\[T(n) = 2T(n/2) + O(n), \]
which is \(O(n \log n) \), exactly what we want.

But we have a problem: The plus-minus trick only works at the top level of the recursion. To recurse at the next level, we need the \(n/2 \) evaluation points \(x_0^2, x_1^2, \ldots, x_{n/2-1}^2 \) to be \textit{themselves} plus-minus pairs. But how can a square be negative? The task seems impossible! \textit{Unless, of course, we use complex numbers.}

Fine, but which complex numbers? To figure this out, let us “reverse engineer” the process. At the very bottom of the recursion, we have a single point. This point might as well be 1, in which case the level above it must consist of its square roots, \(\pm \sqrt{1} = \pm 1 \).

\[
\begin{array}{cccc}
+1 & -1 & +i & -i \\
+1 & -1 & \end{array}
\]

The next level up then has \(\pm \sqrt{1} = \pm 1 \) as well as the complex numbers \(\pm \sqrt{-1} = \pm i \), where \(i \) is the imaginary unit. By continuing in this manner, we eventually reach the initial set of \(n \) points. Perhaps you have already guessed what they are: the \textit{complex nth roots of unity}, that is, the \(n \) complex solutions to the equation \(z^n = 1 \).

Figure 2.6 is a pictorial review of some basic facts about complex numbers. The third panel of this figure introduces the \(n \)th roots of unity: the complex numbers \(1, \omega, \omega^2, \ldots, \omega^{n-1} \), where \(\omega = e^{2\pi i/n} \). If \(n \) is even,

1. The \(n \)th roots are plus-minus paired, \(\omega^{n/2+j} = -\omega^j \).
2. Squaring them produces the \((n/2)\)nd roots of unity.

Therefore, if we start with these numbers for some \(n\) that is a power of 2, then at successive levels of recursion we will have the \((n/2^k)\)th roots of unity, for \(k = 0, 1, 2, 3, \ldots\). All these sets of numbers are plus-minus paired, and so our divide-and-conquer, as shown in the last panel, works perfectly. The resulting algorithm is the fast Fourier transform (Figure 2.7).
Figure 2.6 The complex roots of unity are ideal for our divide-and-conquer scheme.

The complex plane

\[z = a + bi \] is plotted at position \((a, b)\).

Polar coordinates: rewrite as \(z = r(\cos \theta + i \sin \theta) = re^{i\theta}\), denoted \((r, \theta)\).

- **length**: \(r = \sqrt{a^2 + b^2}\).
- **angle**: \(\theta \in [0, 2\pi)\): \(\cos \theta = a/r, \sin \theta = b/r\).
- \(\theta\) can always be reduced modulo \(2\pi\).

Examples:

<table>
<thead>
<tr>
<th>Number</th>
<th>Polar coords</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1)</td>
<td>((1, \pi))</td>
</tr>
<tr>
<td>(i)</td>
<td>((1, \pi/2))</td>
</tr>
<tr>
<td>(5 + 5i)</td>
<td>((5\sqrt{2}, \pi/4))</td>
</tr>
</tbody>
</table>

Multiplying is easy in polar coordinates

Multiply the lengths and add the angles:
\[(r_1, \theta_1) \times (r_2, \theta_2) = (r_1 r_2, \theta_1 + \theta_2)\].

For any \(z = (r, \theta)\),
- \(-z = (r, \theta + \pi)\) since \(-1 = (1, \pi)\).
- If \(z\) is on the unit circle (i.e., \(r = 1\)), then \(z^n = (1, n\theta)\).

The \(n\)th complex roots of unity

Solutions to the equation \(z^n = 1\).

By the multiplication rule: solutions are \(z = (1, \theta)\), for \(\theta\) a multiple of \(2\pi/n\) (shown here for \(n = 16\)).

For even \(n\):
- These numbers are plus-minus paired: \(-1, 1\) = \((1, \theta + \pi)\).
- Their squares are the \((n/2)\)nd roots of unity, shown here with boxes around them.

Divide-and-conquer step

Evaluate \(A(x)\) at \(n\)th roots of unity

Evaluate \(A(x), A_{\alpha}(x)\) at \((n/2)\)nd roots

Paired

Still paired

\((n\) is a power of \(2\))
Figure 2.7 The fast Fourier transform (polynomial formulation)

function FFT(A, \omega)
Input: Coefficient representation of a polynomial A(x) of degree \leq n - 1, where n is a power of 2 \omega, an \(n\)th root of unity
Output: Value representation \(A(\omega^0), \ldots, A(\omega^{n-1})\)

if \(\omega = 1\): return \(A(1)\)

express \(A(x)\) in the form \(A_e(x^2) + xA_o(x^2)\)
call FFT\((A_e, \omega^2)\) to evaluate \(A_e\) at even powers of \(\omega\)
call FFT\((A_o, \omega^2)\) to evaluate \(A_o\) at even powers of \(\omega\)
for \(j = 0\) to \(n - 1\):
 compute \(A(\omega^j) = A_e(\omega^{2j}) + \omega^j A_o(\omega^{2j})\)

return \(A(\omega^0), \ldots, A(\omega^{n-1})\)

2.6.3 Interpolation

Let’s take stock of where we are. We first developed a high-level scheme for multiplying polynomials (Figure 2.5), based on the observation that polynomials can be represented in two ways, in terms of their coefficients or in terms of their values at a selected set of points.

<table>
<thead>
<tr>
<th>Coefficient representation</th>
<th>Evaluation</th>
<th>Interpolation</th>
<th>Value representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0, a_1, \ldots, a_{n-1})</td>
<td></td>
<td></td>
<td>(A(x_0), A(x_1), \ldots, A(x_{n-1}))</td>
</tr>
</tbody>
</table>

The value representation makes it trivial to multiply polynomials, but we cannot ignore the coefficient representation since it is the form in which the input and output of our overall algorithm are specified.

So we designed the FFT, a way to move from coefficients to values in time just \(O(n \log n)\), when the points \(\{x_i\}\) are complex \(n\)th roots of unity \((1, \omega, \omega^2, \ldots, \omega^{n-1})\).

\[
\langle \text{values} \rangle = \text{FFT}(\langle \text{coefficients} \rangle, \omega).
\]

The last remaining piece of the puzzle is the inverse operation, interpolation. It will turn out, amazingly, that

\[
\langle \text{coefficients} \rangle = \frac{1}{n} \text{FFT}(\langle \text{values} \rangle, \omega^{-1}).
\]

Interpolation is thus solved in the most simple and elegant way we could possibly have hoped for—using the same FFT algorithm, but called with \(\omega^{-1}\) in place of \(\omega\)! This might seem like a miraculous coincidence, but it will make a lot more sense when we recast our polynomial operations in the language of linear algebra. Meanwhile, our \(O(n \log n)\) polynomial multiplication algorithm (Figure 2.5) is now fully specified.
A matrix reformulation

To get a clearer view of interpolation, let’s explicitly set down the relationship between our two representations for a polynomial \(A(x) \) of degree \(\leq n - 1 \). They are both vectors of \(n \) numbers, and one is a linear transformation of the other:

\[
\begin{bmatrix}
A(x_0) \\
A(x_1) \\
\vdots \\
A(x_{n-1})
\end{bmatrix} =
\begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.
\]

Call the matrix in the middle \(M \). Its specialized format—a Vandermonde matrix—gives it many remarkable properties, of which the following is particularly relevant to us.

If \(x_0, \ldots, x_{n-1} \) are distinct numbers, then \(M \) is invertible.

The existence of \(M^{-1} \) allows us to invert the preceding matrix equation so as to express coefficients in terms of values. In brief,

Evaluation is multiplication by \(M \), while interpolation is multiplication by \(M^{-1} \).

This reformulation of our polynomial operations reveals their essential nature more clearly. Among other things, it finally justifies an assumption we have been making throughout, that \(A(x) \) is uniquely characterized by its values at any \(n \) points—in fact, we now have an explicit formula that will give us the coefficients of \(A(x) \) in this situation. Vandermonde matrices also have the distinction of being quicker to invert than more general matrices, in \(O(n^2) \) time instead of \(O(n^3) \). However, using this for interpolation would still not be fast enough for us, so once again we turn to our special choice of points—the complex roots of unity.

Interpolation resolved

In linear algebra terms, the FFT multiplies an arbitrary \(n \)-dimensional vector—which we have been calling the coefficient representation—by the \(n \times n \) matrix

\[
M_n(\omega) =
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\
1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^j & \omega^{2j} & \cdots & \omega^{(n-1)j} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{(n-1)} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{bmatrix}
\]

where \(\omega \) is a complex \(n \)th root of unity, and \(n \) is a power of 2. Notice how simple this matrix is to describe: its \((j,k)\)th entry (starting row- and column-count at zero) is \(\omega^{jk} \).

Multiplication by \(M = M_n(\omega) \) maps the \(k \)th coordinate axis (the vector with all zeros except for a 1 at position \(k \)) onto the \(k \)th column of \(M \). Now here’s the crucial observation, which we’ll
prove shortly: the columns of M are orthogonal (at right angles) to each other. Therefore they can be thought of as the axes of an alternative coordinate system, which is often called the Fourier basis. The effect of multiplying a vector by M is to rotate it from the standard basis, with the usual set of axes, into the Fourier basis, which is defined by the columns of M (Figure 2.8). The FFT is thus a change of basis, a rigid rotation. The inverse of M is the opposite rotation, from the Fourier basis back into the standard basis. When we write out the orthogonality condition precisely, we will be able to read off this inverse transformation with ease:

Inversion formula \[M_n(\omega)^{-1} = \frac{1}{n} M_n(\omega^{-1}). \]

But ω^{-1} is also an nth root of unity, and so interpolation—or equivalently, multiplication by $M_n(\omega)^{-1}$—is itself just an FFT operation, but with ω replaced by ω^{-1}.

Now let’s get into the details. Take ω to be $e^{2\pi i/n}$ for convenience, and think of the columns of M as vectors in \mathbb{C}^n. Recall that the angle between two vectors $u = (u_0, \ldots, u_{n-1})$ and $v = (v_0, \ldots, v_{n-1})$ in \mathbb{C}^n is just a scaling factor times their inner product

\[u \cdot v^* = u_0 v_0^* + u_1 v_1^* + \cdots + u_{n-1} v_{n-1}^*, \]

where z^* denotes the complex conjugate\(^4\) of z. This quantity is maximized when the vectors lie in the same direction and is zero when the vectors are orthogonal to each other.

The fundamental observation we need is the following.

Lemma The columns of matrix M are orthogonal to each other.

Proof. Take the inner product of any columns j and k of matrix M,

\[1 + \omega^{j-k} + \omega^{2(j-k)} + \cdots + \omega^{(n-1)(j-k)}. \]

\(^4\)The complex conjugate of a complex number $z = re^{i\theta}$ is $z^* = re^{-i\theta}$. The complex conjugate of a vector (or matrix) is obtained by taking the complex conjugates of all its entries.
This is a geometric series with first term 1, last term $\omega^{(n-1)(j-k)}$, and ratio $\omega^{(j-k)}$. Therefore it evaluates to $(1 - \omega^{(j-k)})/(1 - \omega^{j-k})$, which is 0—except when $j = k$, in which case all terms are 1 and the sum is n.

The orthogonality property can be summarized in the single equation

$$MM^* = nI,$$

since $(MM^*)_{ij}$ is the inner product of the ith and jth columns of M (do you see why?). This immediately implies $M^{-1} = (1/n)M^*$: we have an inversion formula! But is it the same formula we earlier claimed? Let’s see—the (j, k)th entry of M^* is the complex conjugate of the corresponding entry of M, in other words ω^{-jk}. Whereupon $M^* = M_n(\omega^{-1})$, and we’re done.

And now we can finally step back and view the whole affair geometrically. The task we need to perform, polynomial multiplication, is a lot easier in the Fourier basis than in the standard basis. Therefore, we first rotate vectors into the Fourier basis (evaluation), then perform the task (multiplication), and finally rotate back (interpolation). The initial vectors are

coefficient representations, while their rotated counterparts are

value representations. To efficiently switch between these, back and forth, is the province of the FFT.

2.6.4 A closer look at the fast Fourier transform

Now that our efficient scheme for polynomial multiplication is fully realized, let’s hone in more closely on the core subroutine that makes it all possible, the fast Fourier transform.

The definitive FFT algorithm

The FFT takes as input a vector $a = (a_0, \ldots, a_{n-1})$ and a complex number ω whose powers $1, \omega, \omega^2, \ldots, \omega^{n-1}$ are the complex nth roots of unity. It multiplies vector a by the $n \times n$ matrix

$M_n(\omega)$, which has (j, k)th entry (starting row- and column-count at zero) ω^{jk}. The potential for using divide-and-conquer in this matrix-vector multiplication becomes apparent when M’s columns are segregated into evens and odds:

In the second step, we have simplified entries in the bottom half of the matrix using $\omega^{n/2} = -1$ and $\omega^n = 1$. Notice that the top left $n/2 \times n/2$ submatrix is $M_{n/2}(\omega^2)$, as is the one on the
Figure 2.9 The fast Fourier transform

function FFT(a, ω)
Input: An array $a = (a_0, a_1, \ldots, a_{n-1})$, for n a power of 2
A primitive nth root of unity, $ω$
Output: $M_n(ω) a$

if $ω = 1$: return a

$(s_0, s_1, \ldots, s_{n/2-1}) = \text{FFT}((a_0, a_2, \ldots, a_{n-2}), ω^2)$
$(s'_0, s'_1, \ldots, s'_{n/2-1}) = \text{FFT}((a_1, a_3, \ldots, a_{n-1}), ω^2)$
for $j = 0$ to $n/2 - 1$:
 $r_j = s_j + ω^j s'_j$
 $r_{j+n/2} = s_j - ω^j s'_j$
return $(r_0, r_1, \ldots, r_{n-1})$

bottom left. And the top and bottom right submatrices are almost the same as $M_{n/2}(ω^2)$, but with their jth rows multiplied through by $ω^j$ and $-ω^j$, respectively. Therefore the final product is the vector

$$
\begin{bmatrix}
 M_{n/2} & a_0 & \cdots & a_{n-2} \\
 a_2 & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n-2} & \vdots & \ddots & a_0 \\
\end{bmatrix} + ω^j
\begin{bmatrix}
 M_{n/2} & a_1 & \cdots & a_{n-1} \\
 a_3 & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n-1} & \vdots & \ddots & a_1 \\
\end{bmatrix}
$$

In short, the product of $M_n(ω)$ with vector (a_0, \ldots, a_{n-1}), a size-n problem, can be expressed in terms of two size-$n/2$ problems: the product of $M_{n/2}(ω^2)$ with $(a_0, a_2, \ldots, a_{n-2})$ and with $(a_1, a_3, \ldots, a_{n-1})$. This divide-and-conquer strategy leads to the definitive FFT algorithm of Figure 2.9, whose running time is $T(n) = 2T(n/2) + O(n) = O(n \log n)$.

The fast Fourier transform unraveled

Throughout all our discussions so far, the fast Fourier transform has remained tightly co-cooned within a divide-and-conquer formalism. To fully expose its structure, we now unravel the recursion.

The divide-and-conquer step of the FFT can be drawn as a very simple circuit. Here is how a problem of size n is reduced to two subproblems of size $n/2$ (for clarity, one pair of outputs $(j, j + n/2)$ is singled out):
We’re using a particular shorthand: the edges are wires carrying complex numbers from left to right. A weight of j means “multiply the number on this wire by ω^j.” And when two wires come into a junction from the left, the numbers they are carrying get added up. So the two outputs depicted are executing the commands

$$r_j = s_j + \omega^j s_j'$$
$$r_{j+n/2} = s_j - \omega^j s_j'$$

from the FFT algorithm (Figure 2.9), via a pattern of wires known as a butterfly: \square. Unraveling the FFT circuit completely for $n = 8$ elements, we get Figure 10.4. Notice the following.

1. For n inputs there are $\log_2 n$ levels, each with n nodes, for a total of $n \log n$ operations.

2. The inputs are arranged in a peculiar order: 0, 4, 2, 6, 1, 5, 3, 7.

Why? Recall that at the top level of recursion, we first bring up the even coefficients of the input and then move on to the odd ones. Then at the next level, the even coefficients of this first group (which therefore are multiples of 4, or equivalently, have zero as their two least significant bits) are brought up, and so on. To put it otherwise, the inputs are arranged by increasing last bit of the binary representation of their index, resolving ties by looking at the next more significant bit(s). The resulting order in binary, 000, 100, 010, 110, 001, 101, 011, 111, is the same as the natural one, 000, 001, 010, 011, 100, 101, 110, 111 except the bits are mirrored!

3. There is a unique path between each input a_j and each output $A(\omega^k)$.

This path is most easily described using the binary representations of j and k (shown in Figure 10.4 for convenience). There are two edges out of each node, one going up (the 0-edge) and one going down (the 1-edge). To get to $A(\omega^k)$ from any input node, simply follow the edges specified in the bit representation of k, starting from the rightmost bit. (Can you similarly specify the path in the reverse direction?)

4. On the path between a_j and $A(\omega^k)$, the labels add up to $jk \mod 8$.

Since $\omega^8 = 1$, this means that the contribution of input a_j to output $A(\omega^k)$ is $a_j \omega^{jk}$, and therefore the circuit computes correctly the values of polynomial $A(x)$.

FFT, (input: a_0, \ldots, a_{n-1}, output: r_0, \ldots, r_{n-1})
5. And finally, notice that the FFT circuit is a natural for parallel computation and direct implementation in hardware.

Figure 2.10 The fast Fourier transform circuit.