Linux Filesystem Hierarchy

mailto:linuxfilesystem(at)yahoo(dot)com(dot)au

Chapter 1. Linux Filesystem Hierarchy

1.1. Foreward

When migrating from another operating system such as Microsoft Windows to another; one thing that will
profoundly affect the end user greatly will be the differences between the filesystems.

What are filesystems?

A filesystem is the methods and data structures that an operating system uses to keep track of files on a disk or
partition; that is, the way the files are organized on the disk. The word is also used to refer to a partition or
disk that is used to store the files or the type of the filesystem. Thus, one might say I have two filesystems
meaning one has two partitions on which one stores files, or that one is using the extended filesystem,
meaning the type of the filesystem.

The difference between a disk or partition and the filesystem it contains is important. A few programs
(including, reasonably enough, programs that create filesystems) operate directly on the raw sectors of a disk
or partition; if there is an existing file system there it will be destroyed or seriously corrupted. Most programs
operate on a filesystem, and therefore won't work on a partition that doesn't contain one (or that contains one
of the wrong type).

Before a partition or disk can be used as a filesystem, it needs to be initialized, and the bookkeeping data
structures need to be written to the disk. This process is called making a filesystem.

Most UNIX filesystem types have a similar general structure, although the exact details vary quite a bit. The
central concepts are superblock, inode, data block, directory block, and indirection block. The superblock
contains information about the filesystem as a whole, such as its size (the exact information here depends on
the filesystem). An inode contains all information about a file, except its name. The name is stored in the
directory, together with the number of the inode. A directory entry consists of a filename and the number of
the inode which represents the file. The inode contains the numbers of several data blocks, which are used to
store the data in the file. There is space only for a few data block numbers in the inode, however, and if more
are needed, more space for pointers to the data blocks is allocated dynamically. These dynamically allocated
blocks are indirect blocks; the name indicates that in order to find the data block, one has to find its number in
the indirect block first.

Like UNIX, Linux chooses to have a single hierarchical directory structure. Everything starts from the root
directory, represented by /, and then expands into sub—directories instead of having so—called 'drives'. In the
Windows environment, one may put one's files almost anywhere: on C drive, D drive, E drive etc. Such a file
system is called a hierarchical structure and is managed by the programs themselves (program directories), not
by the operating system. On the other hand, Linux sorts directories descending from the root directory /
according to their importance to the boot process.

If you're wondering why Linux uses the frontslash / instead of the backslash \ as in Windows it's because it's
simply following the UNIX tradition. Linux, like Unix also chooses to be case sensitive. What this means is
that the case, whether in capitals or not, of the characters becomes very important. So this is not the same as
THIS. This feature accounts for a fairly large proportion of problems for new users especially during file
transfer operations whether it may be via removable disk media such as floppy disk or over the wire by way of
FTP.

The filesystem order is specific to the function of a file and not to its program context (the majority of Linux
filesystems are 'Second Extended File Systems', short 'EXT2' (aka 'ext2fs' or 'extfs2') or are themselves
subsets of this filesystem such as ext3 and Reiserfs). It is within this filesystem that the operating system
determines into which directories programs store their files.

If you install a program in Windows, it usually stores most of its files in its own directory structure. A help
file for instance may be in C:\Program Files\[program name]\ or in C:\Program Files\[program—name]\help or
in C:\Program Files\[program —name]\humpty\dumpty\doo. In Linux, programs put their documentation into
/usr/share/doc/[program—name], man(ual) pages into /usr/share/man/man[1-9] and info pages into
/usr/share/info. They are merged into and with the system hierarchy.

As all Linux users know, unless you mount a partition or a device, the system does not know of the existence
of that partition or device. This might not appear to be the easiest way to provide access to your partitions or
devices, however it offers the advantage of far greater flexibility when compared to other operating systems.
This kind of layout, known as the unified filesystem, does offer several advantages over the approach that
Windows uses. Let's take the example of the /usr directory. This sub—directory of the root directory contains
most of the system executables. With the Linux filesystem, you can choose to mount it off another partition or
even off another machine over the network using an innumerable set of protocols such as NFS (Sun), Coda
(CMU) or AFS (IBM). The underlying system will not and need not know the difference. The presence of the
/usr directory is completely transparent. It appears to be a local directory that is part of the local directory
structure.

Compliance requires that:

fomm o fomm +
| | shareable | unshareable |
fomm o fomm e +
|static | /usr | /etc |
| | /opt | /boot |
fomm o fomm e +
|variable | /var/mail | /var/run |
| | /var/spool/news | /var/lock |
fomm o fomm +

"Shareable" files are defined as those that can be stored on one host and
used on others. "Unshareable" files are those that are not shareable. For
example, the files in user home directories are shareable whereas device
lock files are not. "Static" files include binaries, libraries,
documentation files and other files that do not change without system
administrator intervention. "Variable" files are defined as files that
are not static.

Another reason for this unified filesystem is that Linux caches a lot of disk accesses using system memory
while it is running to accelerate these processes. It is therefore vitally important that these buffers are flushed
(get their content written to disk), before the system closes down. Otherwise files are left in an undetermined
state which is of course a very bad thing. Flushing is achieved by 'unmounting' the partitions during proper
system shutdown. In other words, don't switch your system off while it's running! You may get away with it
quite often, since the Linux file system is very robust, but you may also wreak havoc upon important files.
Just hit ctrl-alt—del or use the proper commands (e.g. shutdown, poweroff, init 0). This will shut down the
system in a decent way which will thus, guarantee the integrity of your files.

Many of us in the Linux community have come to take for granted the existence of excellent books and
documents about Linux, an example being those produced by the Linux Documentation Project. We are used
to having various packages taken from different sources such as Linux FTP sites and distribution CD—ROMs

integrate together smoothly. We have come to accept that we all know where critical files like mount can be
found on any machine running Linux. We also take for granted CD—ROM based distributions that can be run
directly from the CD and which consume only a small amount of physical hard disk or a RAM disk for some
variable files like /etc/passwd, etc. This has not always been the case.

During the adolescent years of Linux during the early to mid—90s each distributor had his own favorite
scheme for locating files in the directory hierarchy. Unfortunately, this caused many problems. The Linux File
System Structure is a document, which was created to help end this anarchy. Often the group, which creates
this document or the document itself, is referred to as the FSSTND. This is short for file system standard".
This document has helped to standardize the layout of file systems on Linux systems everywhere. Since the
original release of the standard, most distributors have adopted it in whole or in part, much to the benefit of all
Linux users.

Since the first draft of the standard, the FSSTND project has been coordinated by Daniel Quinlan and
development of this standard has been through consensus by a group of developers and Linux enthusiasts. The
FSSTND group set out to accomplish a number of specific goals. The first goal was to solve a number of
problems that existed with the current distributions at the time. Back then, it was not possible to have a
shareable /usr partition, there was no clear distinction between /bin and /usr/bin, it was not possible to set up a
diskless workstation, and there was just general confusion about what files went where. The second goal was
to ensure the continuation of some reasonable compatibility with the de—facto standards already in use in
Linux and other UNIX-like operating systems. Finally, the standard had to gain widespread approval by the
developers, distributors, and users within the Linux community. Without such support, the standard would be
pointless, becoming just another way of laying out the file system.

Fortunately, the FSSTND has succeeded though there are also some goals that the FSSTND project did not set
out to achieve. The FSSTND does not try to emulate the scheme of any specific commercial UNIX operating
system (e.g. SunOS, AIX, etc.) Furthermore, for many of the files covered by the FSSTND, the standard does
not dictate whether the files should be present, merely where the files should be if they are present. Finally,
for most files, the FSSTND does not attempt to dictate the format of the contents of the files. (There are some
specific exceptions when several different packages may need to know the file formats to work together
properly. For example, lock files that contain the process ID of the process holding the lock.) The overall
objective was to establish the location where common files could be found, if they existed on a particular
machine. The FSSTND project began in early August 1993. Since then, there have been a number of public
revisions of this document. The latest, v2.3 was released on January 29, 2004.

If you're asking "What's the purpose of all this? Well, the answer depends on who you are. If you are a Linux
user, and you don't administrate your own system then the FSSTND ensures that you will be able to find
programs where you'd expect them to be if you've already had experience on another Linux machine. It also
ensures that any documentation you may have makes sense. Furthermore, if you've already had some
experience with Unix before, then the FSSTND shouldn't be too different from what you're currently using,
with a few exceptions. Perhaps the most important thing is that the development of a standard brings Linux to
a level of maturity authors and commercial application developers feel they can support.

If you administer your own machine then you gain all the benefits of the FSSTND mentioned above. You may
also feel more secure in the ability of others to provide support for you, should you have a problem.
Furthermore, periodic upgrades to your system are theoretically easier. Since there is an agreed—upon
standard for the locations of files, package maintainers can provide instructions for upgrading that will not
leave extra, older files lying around your system inhabiting valuable disk space. The FSSTND also means that
there is more support from those providing source code packages for you to compile and install yourself. The
provider knows, for example, where the executable for sed is to be found on a Linux machine and can use that
in his installation scripts or Makefiles.

If you run a large network, the FSSTND may ease many of your NFS headaches, since it specifically
addresses the problems which formerly made shared implementations of /usr impractical. If you are a
distributor, then you will be affected most by the Linux FSSTND. You may have to do a little extra work to
make sure that your distribution is FSSTND-compliant, but your users (and hence your business) will gain by
it. If your system is compliant, third party add—on packages (and possibly your own) will integrate smoothly
with your system. Your users will, of course, gain all the benefits listed above, and many of your support
headaches will be eased. You will benefit from all the discussion and thought that has been put into the
FSSTND and avoid many of the pitfalls involved in designing a filesystem structure yourself. If you adhere to
the FSSTND, you will also be able to take advantage of various features that the FSSTND was designed
around. For example, the FSSTND makes "live" CD—ROMs containing everything except some of the files in
the / and /var directories possible. If you write documentation for Linux, the FSSTND makes it much easier to
do so, which makes sense to the Linux community. You no longer need to worry about the specific location of
lock files on one distribution versus another, nor are you forced to write documentation that is only useful to
the users of a specific distribution. The FSSTND is at least partly responsible for the recent explosion of
Linux books being published.

If you are a developer, the existence of the FSSTND greatly eases the possibility for potential problems. You
can know where important system binaries are found, so you can use them from inside your programs or your
shell scripts. Supporting users is also greatly eased, since you don't have to worry about things like the
location of these binaries when resolving support issues. If you are the developer of a program that needs to
integrate with the rest of the system, the FSSTND ensures that you can be certain of the steps to meet this end.
For example, applications such as kermit, which access the serial ports, need to know they can achieve
exclusive access to the TTY device. The FSSTND specifies a common method of doing this so that all
compliant applications can work together. That way you can concentrate on making more great software for
Linux instead of worrying about how to detect and deal with the differences in flavors of Linux. The
widespread acceptance of the FSSTND by the Linux community has been crucial to the success of both the
standard and operating system. Nearly every modern distribution conforms to the Linux FSSTND. If your
implementation isn't at least partially FSSTND compliant, then it is probably either very old or you built it
yourself. The FSSTND itself contains a list of some of the distributions that aim to conform to the FSSTND.
However, there are some distributions that are known to cut some corners in their implementation of
FSSTND.

By no means does this mean that the standard itself is complete. There are still unresolved issues such as the
organization of architecture—independent scripts and data files /usr/share. Up until now, the 1386 has been the
primary platform for Linux, so the need for standardization of such files was non—existent.

The rapid progress in porting Linux to other architectures (MC680x0, Alpha, MIPS, PowerPC) suggests that
this issue will soon need to be dealt with. Another issue that is under some discussion is the creation of an /opt
directory as in SVR4. The goal for such a directory would be to provide a location for large commercial or
third party packages to install themselves without worrying about the requirements made by FSSTND for the
other directory hierarchies. The FSSTND provides the Linux community with an excellent reference
document and has proven to be an important factor in the maturation of Linux. As Linux continues to evolve,
so will the FSSTND.

Now, that we have seen how things should be, let's take a look at the real world. As you will see, the
implementation of this concept on Linux isn't perfect and since Linux has always attracted individualists who
tend to be fairly opinionated, it has been a bone of contention among users for instance which directories
certain files should be put into. With the arrival of different distributions, anarchy has once again descended
upon us. Some distributions put mount directories for external media into the / directory, others into /mnt. Red
Hat based distributions feature the /etc/sysconfig sub—hierarchy for configuration files concerning input and
network devices. Other distributions do not have this directory at all and put the appropriate files elsewhere or

even use completely different mechanisms to do the same thing. Some distributions put KDE into /opt/, others
into /usr.

But even within a given file system hierarchy, there are inconsistencies. For example, even though this was
never the intention of the XFree86 group, XFree86 does indeed have its own directory hierarchy.

These problems don't manifest themselves as long as you compile programs yourself. You can adapt
configure scripts or Makefiles to your system's configuration or to your preference. It's a different story if you
install pre—compiled packages like RPMs though. Often these are not adaptable from one file system
hierarchy to another. What's worse: some RPMs might even create their own hierarchy. If you, say, install a
KDE RPM from the SuSE Linux distribution on your Mandrake system, the binary will be put into
/opt/kde2/bin. And thus it won't work, because Mandrake expects it to be in /usr/bin. There are of course ways
to circumvent this problem but the current situation is clearly untenable. Thus, all the leading Linux
distributors have joined the Linux Standard Base project, which is attempting to create a common standard for
Linux distributions. This isn't easy, since changing the file system hierarchy means a lot of work for
distributors so every distributor tries to push a standard which will allow them to keep as much of their own
hierarchy as possible. The LSB will also encompass the proposals made by the Filesystem Hierarchy Standard
project (FHS, former FSSTND).

1.2. The Root Directory

To comply with the FSSTND the following directories, or symbolic links to directories, are required in /.

/bin Essential command binaries

/boot Static files of the boot loader

/dev Device files

/etc Host-specific system configuration

/1ib Essential shared libraries and kernel modules
/media Mount point for removeable media

/mnt Mount point for mounting a filesystem temporarily
/opt Add-on application software packages

/sbin Essential system binaries

/srv Data for services provided by this system
/tmp Temporary files

/usr Secondary hierarchy

/var Variable data

The following directories, or symbolic links to directories, must be in /, if the corresponding subsystem is
installed:

/ —— the root directory

/home User home directories (optional)

/lib<qual> Alternate format essential shared libraries
(optional)

/root Home directory for the root user (optional)

Each directory listed above is described in detail in separate subsections further on in this document.

The reference system will be based upon Debian 3.0r0 (Woody), 2.4.18 kernel configured to a Redhat
kernel-2.4.18-i686.config file.

Hardware

¢ Intel Celeron 766 Processor

¢ MSI MS-6309 V.2.0 Mainboard

¢ 512MB PQI PC133 SDRAM

¢ 16x Lite—On LTD-165H DVD-ROM

0 40x24x10 Sony CRX175A1 CD-RW

O NVIDIA RIVA 32MB TNT2 M64

¢ D-Link DFE-530TX 10/100 NIC

0 Realtek RTL8029(AS) 10 NIC

¢ Lucent Mars2 Linmodem

¢ C-Media CMI8738 PCI Audio Device

¢ Miro DC-30 VIVO

¢ Aopen KF-45A Miditower Case

0 Acer Accufeel Keyboard

¢ Genius Netscroll+ Mouse

¢ Compaq MV500 Presario Monitor
Software

¢ Windows XP on /dev/hdal
O FreeBSD 4.2 on /dev/hda2
0 Redhat 8.0 on /dev/hda5

¢ Debian 3.0r0 on /dev/hda6
¢ Mandrake 9.1 on /dev/hda7
¢ Swap partition on /dev/hda8

As we all know Linux file system starts with /, the root directory. All other directories are 'children' of this
directory. The partition which the root file system resides on is mounted first during boot and the system will
not boot if it doesn't find it. On our reference system, the root directory contains the following
sub—directories:

bin/ dev/ home/ lost+found/ proc/ sbin/ usr/ cdrom/ opt/ vinlinuz boot/ etc/ lib/ mnt/ root/ tmp/ var/ dvd/
floppy/ initrd/ /tftpboot

In days past it was also the home directory of 'root' but now he has been given his own directory for reasons
that will be explained further on in this document.

1.3. /bin

Unlike /sbin, the bin directory contains several useful commands that are of use to both the system
administrator as well as non—privileged users. It usually contains the shells like bash, csh, etc.... and
commonly used commands like cp, mv, rm, cat, Is. For this reason and in contrast to /usr/bin, the binaries in
this directory are considered to be essential. The reason for this is that it contains essential system programs
that must be available even if only the partition containing / is mounted. This situation may arise should you
need to repair other partitions but have no access to shared directories (ie. you are in single user mode and
hence have no network access). It also contains programs which boot scripts may depend on.

Compliance to the FSSTND means that there are no subdirectories in /bin and that the following commands,
or symbolic links to commands, are located there.

cat Utility to concatenate files to standard output
chgrp Utility to change file group ownership

chmod Utility to change file access permissions

chown Utility to change file owner and group

cp Utility to copy files and directories

date Utility to print or set the system data and time
dd Utility to convert and copy a file

df Utility to report filesystem disk space usage
dmesg Utility to print or control the kernel message buffer
echo Utility to display a line of text

false Utility to do nothing, unsuccessfully

hostname Utility to show or set the system's host name

kill Utility to send signals to processes

1n Utility to make links between files

login Utility to begin a session on the system

1s Utility to list directory contents

mkdir Utility to make directories

mknod Utility to make block or character special files
more Utility to page through text

mount Utility to mount a filesystem

mv Utility to move/rename files

Ps Utility to report process status

pwd Utility to print name of current working directory
rm Utility to remove files or directories

rmdir Utility to remove empty directories

sed The "sed' stream editor

sh The Bourne command shell

stty Utility to change and print terminal line settings
su Utility to change user ID

sync Utility to flush filesystem buffers

true Utility to do nothing, successfully

umount Utility to unmount file systems

uname Utility to print system information

If /bin/sh is not a true Bourne shell, it must be a hard or symbolic link to
the real shell command.

The rationale behind this is because sh and bash mightn't necessarily behave
in the same manner. The use of a symbolic link also allows users to easily
see that /bin/sh is not a true Bourne shell.

The [and test commands must be placed together in either /bin or /usr/bin.
The requirement for the [and test commands to be included as binaries
(even if implemented internally by the shell) is shared with the POSIX.2

standard.

The following programs, or symbolic links to programs, must be in /bin if the
corresponding subsystem is installed:

csh The C shell (optional)

ed The “ed' editor (optional)

tar The tar archiving utility (optional)

cpio The cpio archiving utility (optional)
gzip The GNU compression utility (optional)
gunzip The GNU uncompression utility (optional)
zcat The GNU uncompression utility (optional)
netstat The network statistics utility (optional)
ping The ICMP network test utility (optional)

If the gunzip and zcat programs exist, they must be symbolic or hard links to
gzip. /bin/csh may be a symbolic link to /bin/tcsh or /usr/bin/tcsh.

The tar, gzip and cpio commands have been added to make restoration of a

system possible (provided that / is intact).

Conversely, if no restoration from the root partition is ever expected,
then these binaries might be omitted (e.g., a ROM chip root, mounting /usr
through NFS). If restoration of a system is planned through the network,
then ftp or tftp (along with everything necessary to get an ftp connection)
must be available on the root partition.

1.4. /boot

This directory contains everything required for the boot process except for configuration files not needed at
boot time (the most notable of those being those that belong to the GRUB boot—loader) and the map installer.
Thus, the /boot directory stores data that is used before the kernel begins executing user—mode programs. This
may include redundant (back—up) master boot records, sector/system map files, the kernel and other important
boot files and data that is not directly edited by hand. Programs necessary to arrange for the boot loader to be
able to boot a file are placed in /sbin. Configuration files for boot loaders are placed in /etc. The system kernel
is located in either / or /boot (or as under Debian in /boot but is actually a symbolically linked at / in
accordance with the FSSTND).

/boot/boot.0300
Backup master boot record.

/boot/boot.b
This is installed as the basic boot sector. In the case of most modern distributions it is actually a
symbolic link to one of four files /boot/boot—bmp.b, /boot/boot—menu.b, /boot/boot—text.b,
/boot/boot—compat.b which allow a user to change the boot—up schema so that it utilises a splash
screen, a simple menu, a text based interface or a minimal boot loader to ensure compatibility
respectively. In each case re—installation of lilo is necessary in order to complete the changes. To
change the actual 'boot—logo' you can either use utilities such as fblogo or the more refined
bootsplash.

/boot/chain.b
Used to boot non—Linux operating systems.

/boot/config—kernel—version
Installed kernel configuration. This file is most useful when compiling kernels on other systems or
device modules. Below is a small sample of what the contents of the file looks like.

CONFIG_X86=y
CONFIG_MICROCODE=m
CONFIG_X86_MSR=m
CONFIG_MATH_EMULATION=y
CONFIG_MTRR=y
CONFIG_MODULES=y
CONFIG_MODVERSIONS=y
CONFIG_SCSI_DEBUG=m
CONFIG_I20=m
CONFIG_ARCNET_ETH=y
CONFIG_FMV18X=m
CONFIG_HPLAN_PLUS=m
CONFIG_ETHI16I=m
CONFIG_NE2000=m
CONFIG_HISAX HFC_PCI=y
CONFIG_ISDN_DRV_AVMBI1_C4=m
CONFIG_USB_RIO500=m
CONFIG_QUOTA=y
CONFIG_AUTOFS_FS=m
CONFIG_ADFS_FS=m

CONFIG_AFFS_FS=m
CONFIG_HFS_FS=m
CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_UMSDOS_FS=m
CONFIG_FBCON_VGA=m
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y
CONFIG_SOUND=m
CONFIG_SOUND_CMPCI=m
CONFIG_AEDSP16=m

As you can see, it's rather simplistic. The line begins with the configuration option and whether it's
configured as part of the kernel, as a module or not at all. Lines beginning with a # symbol are
comments and are not interpreted during processing.

/boot/os2_d.b
Used to boot to the 0S/2 operating system.

/boot/map
Contains the location of the kernel.

/boot/vmlinuz, /boot/vmlinuz—kernel—version
Normally the kernel or symbolic link to the kernel.

/boot/grub
This subdirectory contains the GRUB configuration files including boot—up images and sounds.
GRUB is the GNU GRand Unified Bootloader, a project which intends to solve all bootup problems
once and for all. One of the most interesting features, is that you don't have to install a new partition
or kernel, you can change all parameters at boot time via the GRUB Console, since it knows about the
filesystems.

/boot/grub/device.map
Maps devices in /dev to those used by grub. For example, (/dev/fd0) is represented by /dev/fd0 and
(hd0, 4) is referenced by /dev/hdas.

/boot/grub/grub.conf, /boot/grub/menu.lst
Grub configuration file.

/boot/grub/messages
Grub boot—up welcome message.

/boot/grub/splash.xpm.gz
Grub boot—up background image.

1.5. /dev

/dev is the location of special or device files. It is a very interesting directory that highlights one important
aspect of the Linux filesystem — everything is a file or a directory. Look through this directory and you should
hopefully see hdal, hda2 etc.... which represent the various partitions on the first master drive of the system.
/dev/cdrom and /dev/fd0 represent your CD—ROM drive and your floppy drive. This may seem strange but it
will make sense if you compare the characteristics of files to that of your hardware. Both can be read from and
written to. Take /dev/dsp, for instance. This file represents your speaker device. Any data written to this file
will be re—directed to your speaker. If you try 'cat /boot/vmlinuz > /dev/dsp' (on a properly configured system)
you should hear some sound on the speaker. That's the sound of your kernel! A file sent to /dev/Ip0 gets
printed. Sending data to and reading from /dev/ttySO will allow you to communicate with a device attached
there — for instance, your modem.

The majority of devices are either block or character devices; however other types of devices exist and can be
created. In general, 'block devices' are devices that store or hold data, 'character devices' can be thought of as

devices that transmit or transfer data. For example, diskette drives, hard drives and CD—ROM drives are all
block devices while serial ports, mice and parallel printer ports are all character devices. There is a naming
scheme of sorts but in the vast majority of cases these are completely illogical.

total 724

1lrwXrwXrwx 1 root root 13 Sep 28 18:06 MAKEDEV -> /sbin/MAKEDEV
CrWw—Yw———— 1 root audio 14, 14 Oct 7 16:26 admmidiO

CrWw—Yrw———— 1 root audio 14, 30 Oct 7 16:26 admmidil

1rwXrwXrwx 1 root root 11 Oct 7 16:26 amidi —-> /dev/amidiO
Crw—Yw———— 1 root audio 14, 13 Oct 7 16:26 amidiO

Crw—Yw———— 1 root audio 14, 29 Oct 7 16:26 amidil

CrWw—Yw———— 1 root audio 14, 11 Oct 7 16:26 amixerO

CIW—rw———— 1 root audio 14, 27 Oct 7 16:26 amixerl

drwxr—-xr—-x 2 root root 4096 Sep 28 18:05 ataraid

1rwXrwxXrwx 1 root root 11 Oct 7 16:26 audio —> /dev/audioO
CYrW—Yrw———— 1 root audio 14, 4 Oct 7 16:26 audioO

CYrW—Yrw———— 1 root audio 14, 20 Oct 7 16:26 audiol

CrwW—Yw———— 1 root audio 14, 7 Mar 15 2002 audioctl

1rwXrwXrwx 1 root root 9 Oct 14 22:51 cdrom —> /dev/scdl
1lrwXrwxXrwx 1 root root 9 Oct 14 22:52 cdroml -> /dev/scdO
QIElj——————= 1 root tty 5, 1 Jan 19 20:47 console

1rwWXrWwXIrwx 1 root root 11 Sep 28 18:06 core -> /proc/kcore
Crw—Yrw———— 1 root audio 14, 10 Oct 7 16:26 dmfmO

CIW—rw———— 1 root audio 14, 26 Oct 7 16:26 dmfml

CrwW—Yw———— 1 root audio 14, 9 Oct 7 16:26 dmmidiO

CrwW—Yw———— 1 root audio 14, 25 Oct 7 16:26 dmmidil

1rwXrwxrwx 1 root root 9 Oct 7 16:26 dsp —-> /dev/dspO
CrW—Yrw———— 1 root audio 14, 3 Oct 7 16:26 dsp0

CrW—Yrw———— 1 root audio 14, 19 Oct 7 16:26 dspl

Crw——w———— 1 root video 29, 0 Mar 15 2002 fbO

Crw——w———— 1 root video 29, 1 Mar 15 2002 fbOautodetect
Crw——w———— 1 root video 29, 0 Mar 15 2002 fbOcurrent
CIW——W———— 1 root video 29, 32 Mar 15 2002 fbl

Crw——w———— 1 root video 29, 33 Mar 15 2002 fblautodetect
Crw——w———— 1 root video 29, 32 Mar 15 2002 fblcurrent
1rWXrWXTrwx 1 root root 13 Sep 28 18:05 fd -> /proc/self/fd
brw-rw———— 1 root floppy 2, 0 Mar 15 2002 £dO

brw-rw———— 1 root floppy 2, 1 Mar 15 2002 fdil

CrW——W——W— 1 root root i, 7 Sep 28 18:06 full

brw—rw———-— 1 root disk 3, 0 Mar 15 2002 hda

brw—rw———-— 1 root disk 3, 64 Mar 15 2002 hdb

brw—rw———-— 1 root disk 22, 0 Mar 15 2002 hdc

brw—rw———-— 1 root disk 22, 64 Mar 15 2002 hdd

drwxr—-xr—-x 2 root root 12288 Sep 28 18:05 ida

PIEf=—————= 1 root root 0 Jan 19 20:46 initctl

brw—rw———-— 1 root disk 1, 250 Mar 15 2002 initrd

drwxr—-xr—-x 2 root root 4096 Sep 28 18:05 input

CrW—Yw———— 1 root dialout 45, 128 Mar 15 2002 ipppO

Crw—Yrw———— 1 root dialout 45, 0 Mar 15 2002 isdnO

Crw—Yrw———— 1 root dialout 45, 64 Mar 15 2002 isdnctrlO
Crw—Yrw———— 1 root dialout 45, 255 Mar 15 2002 isdninfo

Crw——————— 1 root root 10, 4 Mar 15 2002 Jjbm

Crw—r————— 1 root kmem i, 2 Sep 28 18:06 kmem

brw—rw———-— 1 root cdrom 24, 0 Mar 15 2002 lmscd

Crw——————— 1 root root 10, 0 Mar 15 2002 logibm

brw-—rw———-— 1 root disk 7, 0 Sep 28 18:06 loopO

brw-—rw———-— 1 root disk 7, 1 Sep 28 18:06 loopl

CrW—Irw———— 1 root 1p 6, 0 Mar 15 2002 1p0

CIW—Xw———— 1 root 1p 6, 1 Mar 15 2002 1pl

CIW—Xw———— 1 root 1p 6, 2 Mar 15 2002 1p2

Crw—r————— 1 root kmem i, 1 Sep 28 18:06 mem

1rwXrwXrwx 1 root root 10 Oct 7 16:26 midi -> /dev/midi0
CrwW—Yrw———— 1 root audio 14, 2 Oct 7 16:26 midiO
Crw—Yw———— 1 root audio 14, 18 Oct 7 16:26 midil
1rwXrwxXrwx 1 root root 11 Oct 7 16:26 mixer —> /dev/mixer(
CrW—Xrw—Irw-— 1 root root 14, 0 Nov 11 16:22 mixer0
CrW—rw———-— 1 root audio 14, 16 Oct 7 16:26 mixerl
1rwXrwxrwx 1 root root 11 Oct 7 06:50 modem —> /dev/ttyLTO
CrW—Yrw———— 1 root audio 31, 0 Mar 15 2002 mpud40Oldata
CrW—Yrw———— 1 root audio 31, 1 Mar 15 2002 mpu40Olstat
CrwW—Yw———— 1 root audio 14, 8 Oct 7 16:26 music
CIW—YW—YW— 1 root root i, 3 Sep 28 18:06 null
CrW—YW—Yw-— 1 root root 195, 0 Jan 6 03:03 nvidiaO
CrW—YW—Yw-— 1 root root 195, 1 Jan 6 03:03 nvidial
CrW—YW—Yw-— 1 root root 195, 255 Jan 6 03:03 nvidiactl
CrW—Irw———— 1 root 1p 6, 0 Mar 15 2002 parO
CIW—YXw———— 1 root 1p 6, 1 Mar 15 2002 parl
CIW—YXw———— 1 root 1p 6, 2 Mar 15 2002 parz
—IrW—r——r—-— 1 root root 665509 Oct 7 16:41 pcm

Crw—r————— 1 root kmem i, 4 Sep 28 18:06 port
CrW—Yrw———— 1 root dip 108, 0 Sep 28 18:07 ppp

Crw——————— 1 root root 10, 1 Mar 15 2002 psaux
CIW—YW—TrwW— 1 root root i, 8 Sep 28 18:06 random
CrWw—Yrw———— 1 root root 10, 135 Mar 15 2002 rtc

brw—rw———-— 1 root cdrom 11, 0 Mar 15 2002 scdO
brw—rw———-— 1 root cdrom 11, 1 Mar 15 2002 scdl
brw—rw———-— 1 root disk 8, 0 Mar 15 2002 sda

brw—rw———-— 1 root disk 8, 1 Mar 15 2002 sdal
brw—rw———-— 1 root disk 8, 2 Mar 15 2002 sdaz
brw—rw———-— 1 root disk 8, 3 Mar 15 2002 sda3
brw—rw———-— 1 root disk 8, 4 Mar 15 2002 sda4
brw—rw———-— 1 root disk 8, 16 Mar 15 2002 sdb

brw—rw———-— 1 root disk 8, 17 Mar 15 2002 sdbl
brw—rw———-— 1 root disk 8, 18 Mar 15 2002 sdb2
brw—rw———-— 1 root disk 8, 19 Mar 15 2002 sdb3
brw—rw———-— 1 root disk 8, 20 Mar 15 2002 sdb4
CrW—Yrw———— 1 root audio 14, 1 Oct 7 16:26 sequencer
1rwXrwXrwx 1 root root 10 Oct 7 16:26 sequencer2 —-> /dev/music
1rWXrWwXIrwx 1 root root 4 Sep 28 18:05 stderr —-> fd/2
1rWXrWwXTrwx 1 root root 4 Sep 28 18:05 stdin -> fd/O0
1rWXrWwXIrwx 1 root root 4 Sep 28 18:05 stdout —-> fd/1
CIW—YW—YrwW— 1 root tty 5, 0 Sep 28 18:06 tty

Crw——————— 1 root root 4, 0 Sep 28 18:06 tty0
Crw——————— 1 root root 4, 1 Jan 19 14:59 ttyl
CrW—Yrw———— 1 root dialout 62, 64 Oct 7 06:50 ttyLTO
CrW—Yrw———— 1 root dialout 4, 64 Mar 15 2002 ttySO
CrW—Yrw———— 1 root dialout 4, 65 Mar 15 2002 ttySl
CrW—Yrw———— 1 root dialout 4, 66 Mar 15 2002 ttyS2
CrW—Yrw———— 1 root dialout 4, 67 Mar 15 2002 ttyS3
CrW—Yrw———— 1 root dialout 188, 0 Mar 15 2002 ttyUSBO
CrW—Yrw———— 1 root dialout 188, 1 Mar 15 2002 ttyUSB1
Cr====i—= 1 root root 1, 9 Jan 19 20:46 urandom
drwxr—-xr—-x 2 root root 4096 Sep 28 18:05 usb

[PIEW=E=——== 1 root adm 0 Jan 19 14:58 xconsole
CIW—YW—YrwW— 1 root root i, 5 Sep 28 18:06 zero

Some common device files as well as their equivalent counterparts under Windows that you may wish to
remember are:

/dev/ttySO (First communications port, COM1)
First serial port (mice, modems).
/dev/psaux (PS/2)

PS/2 mouse connection (mice, keyboards).

/dev/Ip0 (First printer port, LPT1)
First parallel port (printers, scanners, etc).

/dev/dsp (First audio device)
The name DSP comes from the term digital signal processor, a specialized processor chip optimized
for digital signal analysis. Sound cards may use a dedicated DSP chip, or may implement the
functions with a number of discrete devices. Other terms that may be used for this device are digitized
voice and PCM.

/dev/usb (USB Devices)
This subdirectory contains most of the USB device nodes. Device name allocations are fairly
simplistic so no elaboration is be necessary.

/dev/sda (C:\, SCSI device)
First SCSI device (HDD, Memory Sticks, external mass storage devices such as CD—ROM drives on
laptops, etc).

/dev/scd (D:\, SCSI CD-ROM device)
First SCSI CD-ROM device.

/dev/js0 (Standard gameport joystick)
First joystick device.

Devices are defined by type, such as 'block' or 'character’, and 'major' and 'minor' number. The major number
is used to categorize a device and the minor number is used to identify a specific device type. For example, all
IDE device connected to the primary controller have a major number of 3. Master and slave devices, as well
as individual partitions are further defined by the use of minor numbers. These are the two numbers precede
the date in the following display:

#1s -1 /dev/hd*

brw—rw———-— 1 root disk 3, 0 Mar 15 2002 /dev/hda
brw-rw———- 1 root disk 3, 1 Mar 15 2002 /dev/hdal
brw-rw———-— 1 root disk 3, 10 Mar 15 2002 /dev/hdalO
brw-rw———-— 1 root disk 3, 11 Mar 15 2002 /dev/hdall
brw-rw———-— 1 root disk 3, 12 Mar 15 2002 /dev/hdal2
brw-rw———-— 1 root disk 3, 13 Mar 15 2002 /dev/hdal3
brw-rw———-— 1 root disk 3, 14 Mar 15 2002 /dev/hdal4
brw-rw———— 1 root disk 3, 15 Mar 15 2002 /dev/hdal5
brw-rw———— 1 root disk 3, 16 Mar 15 2002 /dev/hdalé6
brw-rw———— 1 root disk 3, 17 Mar 15 2002 /dev/hdal7
brw-rw———— 1 root disk 3, 18 Mar 15 2002 /dev/hdalS8
brw-rw———— 1 root disk 3, 19 Mar 15 2002 /dev/hdal9
brw-rw———- 1 root disk 3, 2 Mar 15 2002 /dev/hda2
brw-rw———— 1 root disk 3, 20 Mar 15 2002 /dev/hda20
brw—rw———-— 1 root disk 3, 3 Mar 15 2002 /dev/hda3
brw-rw———- 1 root disk 3, 4 Mar 15 2002 /dev/hda4d
brw—rw———-— 1 root disk 3, 5 Mar 15 2002 /dev/hdab
brw—rw———-— 1 root disk 3, 6 Mar 15 2002 /dev/hdaé6
brw-rw———- 1 root disk 3, 7 Mar 15 2002 /dev/hda7
brw—rw———-— 1 root disk 3, 8 Mar 15 2002 /dev/hda8
brw—rw———-— 1 root disk 3, 9 Mar 15 2002 /dev/hda9
brw-rw———- 1 root disk 3, 64 Mar 15 2002 /dev/hdb
brw—rw———-— 1 root disk 3, 65 Mar 15 2002 /dev/hdbl
brw-rw———— 1 root disk 3, 74 Mar 15 2002 /dev/hdblO
brw-rw———— 1 root disk 3, 75 Mar 15 2002 /dev/hdbll
brw-rw———— 1 root disk 3, 76 Mar 15 2002 /dev/hdbl2
brw-rw———— 1 root disk 3, 77 Mar 15 2002 /dev/hdbl3
brw-rw———— 1 root disk 3, 78 Mar 15 2002 /dev/hdbl4
brw-rw———-— 1 root disk 3, 79 Mar 15 2002 /dev/hdbl5

brw-rw———-— 1 root disk 3, 80 Mar 15 2002 /dev/hdblé6
brw-rw———-— 1 root disk 3, 81 Mar 15 2002 /dev/hdbl7
brw-rw———-— 1 root disk 3, 82 Mar 15 2002 /dev/hdblS8
brw-rw———-— 1 root disk 3, 83 Mar 15 2002 /dev/hdbl9
brw—rw———-— 1 root disk 3, 66 Mar 15 2002 /dev/hdb2
brw-rw———-— 1 root disk 3, 84 Mar 15 2002 /dev/hdb20
brw—rw———-— 1 root disk 3, 67 Mar 15 2002 /dev/hdb3
brw—rw———-— 1 root disk 3, 68 Mar 15 2002 /dev/hdb4
brw—rw———-— 1 root disk 3, 69 Mar 15 2002 /dev/hdb5
brw—rw———-— 1 root disk 3, 70 Mar 15 2002 /dev/hdbé6
brw—rw———-— 1 root disk 3, 71 Mar 15 2002 /dev/hdb7
brw-rw———- 1 root disk 3, 72 Mar 15 2002 /dev/hdb8
brw—rw———-— 1 root disk 3, 73 Mar 15 2002 /dev/hdb9
brw-rw———- 1 root disk 22, 0 Mar 15 2002 /dev/hdc
brw-rw———- 1 root disk 22, 64 Mar 15 2002 /dev/hdd

The major number for both hda and hdb devices is 3. Of course, the minor number changes for each specific
partition. The definition of each major number category can be examined by looking at the contents of the
/usr/src/linux/include/linux/major.h file. The devices.txt also documents major and minor numbers. It is
located in the /ust/src/linux/Documentation directory. This file defines the major numbers. Almost all files
devices are created by default at the install time. However, you can always create a device using the mknod
command or the MAKEDEYV script which is located in the /dev directory itself. Devices can be created with
this utility by supplying the device to be created, the device type (block or character) and the major and minor
numbers. For example, let's say you have accidentally deleted /dev/ttySO (COM1 under Windows), it can be
recreated using the following command

mknod ttySO ¢ 4 64

For those of us who are rather lazy you can simply run the MAKEDEYV script as such

MAKEDEYV *

which will create all devices known.

If is possible that /dev may also contain a MAKEDEYV .local for the creation of any local device files.

In general and as required by the FSSTND, MAKEDEYV will have provisions for creating any device that may
be found on the system, not just those that a particular implementation installs.

For those of you who are wondering why Linux is using such a primitive system to reference devices its
because we haven't been able to devise a sufficiently sophisticated mechanism which provides enough
advantages over the current system in order to achieve widespread adoption.

To date (as of kernel version 2.4), the best attempt has been made by Richard Gooch of the CSIRO. It's called
devfsd and has been a part of the kernel for a number of years now. It has been sanctioned by the kernel
developers and Linus himself and details of its implementation can be found at
/usr/src/linux/Documentation/filesystems/devfs/README. Below is an excerpt from this document.

Devfs is an alternative to "real" character and block special devices on your root filesystem. Kernel device
drivers can register devices by name rather than major and minor numbers. These devices will appear in devfs
automatically, with whatever default ownership and protection the driver specified. A daemon (devfsd) can be
used to override these defaults. Devfs has been in the kernel since 2.3.46.

NOTE that devfs is entirely optional. If you prefer the old disc—based device nodes, then simply leave
CONFIG_DEVFS_FS=n (the default). In this case, nothing will change. ALSO NOTE that if you do enable
devfs, the defaults are such that full compatibility is maintained with the old devices names.

There are two aspects to devfs: one is the underlying device namespace, which is a namespace just like any
mounted filesystem. The other aspect is the filesystem code which provides a view of the device namespace.
The reason I make a distinction is because devfs can be mounted many times, with each mount showing the
same device namespace. Changes made are global to all mounted devfs filesystems. Also, because the devfs
namespace exists without any devfs mounts, you can easily mount the root filesystem by referring to an entry
in the devfs namespace.

The cost of devfs is a small increase in kernel code size and memory usage. About 7 pages of code (some of
that in __init sections) and 72 bytes for each entry in the namespace. A modest system has only a couple of
hundred device entries, so this costs a few more pages. Compare this with the suggestion to put /dev on a
ramdisc.

On a typical machine, the cost is under 0.2 percent. On a modest system with 64 MBytes of RAM, the cost is
under 0.1 percent. The accusations of "bloatware" levelled at devfs are not justified.

As of kernel version 2.6, devfs has been marked obsolete and has now been replaced by udev. A system very
similar (at least from a the end user's point of view) to devfs but which works entirely in userspace. An
overview of udev can be found at

http://www.kroah.com/linux/talks/ols 2003 udev paper/Reprint—Kroah—Hartman—OI.S2003.pdf

1.6. /etc

This is the nerve center of your system, it contains all system related configuration files in here or in its
sub—directories. A "configuration file" is defined as a local file used to control the operation of a program; it
must be static and cannot be an executable binary. For this reason, it's a good idea to backup this directory
regularly. It will definitely save you a lot of re—configuration later if you re—install or lose your current
installation. Normally, no binaries should be or are located here.

lete/X11/
This directory tree contains all the configuration files for the X Window System. Users should note
that many of the files located in this directory are actually symbolic links to the /ust/X11R6 directory
tree. Thus, the presence of these files in these locations can not be certain.

/letc/X11/XF86Config, /etc/X11/XF86Config—4
The 'X' configuration file. Most modern distributions possess hardware autodetection systems that
enable automatic creation of a valid file. Should autodetection fail a configuration file can also be
created manually provided that you have sufficient knowledge about your system. It would be
considered prudent not to attempt to type out a file from beginning to end. Rather, use common
configuration utilities such as xf86config, XF86Setup and xf86cfg to create a workable template.
Then, using suitable documentation commence optimization through intuition and/or trial and error.
Options that can be configured via this file include X modules to be loaded on startup, keyboard,
mouse, monitor and graphic chipset type. Often, commercial distributions will include their own X
configuration utilities such as XDrake on Mandrake and also Xconfiguration on Redhat. Below is a
sample X configuration file from the reference system

BEGIN DEBCONEF SECTION
XF86Config-4 (XFree86 server configuration file) generated by dexconf, the

http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf

Debian X Configuration tool, using values from the debconf database.

Edit this file with caution, and see the XF86Config-4 manual page.
(Type "man XF86Config-4" at the shell prompt.)

If you want your changes to this file preserved by dexconf, only
make changes

before the "### BEGIN DEBCONF SECTION" line above, and/or after the
"### END DEBCONF SECTION" line below.

To change things within the debconf section, run the command:
dpkg-reconfigure xserver—-xfree86

as root. Also see "How do I add custom sections to a dexconf-

generated

XF86Config or XF86Config-4 file?" in /usr/share/doc/xfree86—

common/FAQ.gz.

S o o e e o o o 3e o o o e e o o

Section "Files"

FontPath "unix/:7100"
local font server

1f the local font server has problems,
we can fall back on these

FontPath "/usr/lib/X11/fonts/misc"
FontPath "/usr/lib/X11/fonts/cyrillic"
FontPath "/usr/lib/X11/fonts/100dpi/:unscaled"
FontPath "/usr/lib/X11/fonts/75dpi/:unscaled"
FontPath "/usr/lib/X11/fonts/Typel"
FontPath "/usr/lib/X11/fonts/Speedo"
FontPath "/usr/1lib/X11/fonts/100dpi"
FontPath "/usr/lib/X11/fonts/75dpi"

EndSection

Section "Module"

Load "GLcore"
Load "bitmap"
Load "dbe"
Load "ddc"
Load "dri"
Load "extmod"
Load "freetype"
Load "glx"
Load "intl0"
Load "pex5"
Load "record"
Load "speedo"
Load "typel"
Load "vbe"
Load "xie"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "keyboard"

Option "CoreKeyboard"

Option "XkbRules" "xfree86"

Option "XkbModel" "pclO4"

Option "XkbLayout" "us"
EndSection

Section "InputDevice"
Identifier "Configured Mouse"
Driver "mouse"

Option "CorePointer"
Option "Device" "/dev/psaux"
Option "Protocol" "NetMousePS/2"
Option "Emulate3Buttons" "true"
Option "ZAx1isMapping" "4 5"
EndSection
Section "InputDevice"
Identifier "Generic Mouse"
Driver "mouse"
Option "SendCoreEvents" "true"
Option "Device" "/dev/input/mice"
Option "Protocol" "ImPS/2"
Option "Emulate3Buttons" "true"
Option "ZAx1isMapping" "4 5"
EndSection
Section "Device"
Identifier "Generic Video Card"
Driver "nv"
Option "UseFBDev" "true"
Option "UseFBDev" "false"
EndSection
Section "Monitor"
Identifier "Generic Monitor"
HorizSync 30-38
VertRefresh 43-95
Option "DPMS"
EndSection
Section "Screen"
Identifier "Default Screen"
Device "Generic Video Card"
Monitor "Generic Monitor"
DefaultDepth 16
SubSection "Display"
Depth 1
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 4
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 8
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 15
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 16
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 24
Modes "800x600" "640x480"
EndSubSection

EndSection

Section "ServerLayout"

Identifier "Default Layout"

Screen "Default Screen"

InputDevice "Generic Keyboard"

InputDevice "Configured Mouse"

InputDevice "Generic Mouse"
EndSection

Section "DRI"
Mode 0666
EndSection

END DEBCONF SECTION
As you can see, the layout of the file is quite simple and tends to be quite standard across most
distributions. At the top are the locations of the various font files for X (note — X will not start if you
do not specify a valid font), next is the "Modules" section. It details what modules are to be loaded
upon startup. The most well known extensions are probably GLX (required for 3D rendering of
graphics and games) and Xinerama which allows users to expand their desktop over several monitors.
Next are the various "Device" sections which describe the type of hardware you have. Improper
configuration of these subsections can lead to heartache and trauma with seemingly misplaced keys,
bewitched mice and also constant flashing as X attempts to restart in a sometimes never ending loop.
In most cases when all else fails the vesa driver seems to be able to initialise most modern video
cards. In the "Screen" section it is possible to alter the default startup resolution and depth. Quite
often it is possible to alter these attributes on the fly by using the alt—ctrl—+ or alt—ctrl— set of
keystrokes. Lastly are the "ServerLayout" and "DRI" sections. Users will almost never touch the
"DRI" section and only those who wish to utilise the Xinerama extensions of X will require having to
change any of the ServerLayout options.

/etc/X11/Xmodmap
In general your default keyboard mapping comes from your X server setup. If this setup is insufficient
and you are unwilling to go through the process of reconfiguration and/or you are not the superuser
you'll need to use the xmodmap program. This is the utility's global configuration file.

letc/X11/xkb/
The various symbols, types, geometries of keymaps that the X server supports can be found in this
directory tree.

/etc/X11/Ibxproxy/
Low Bandwidth X (LBX) proxy server configuration files. Applications that would like to take
advantage of the Low Bandwidth extension to X (LBX) must make their connections to an lbxproxy.
These applications need know nothing about LBX, they simply connect to the Ibxproxy as if it were a
regular X server. The Ibxproxy accepts client connections, multiplexes them over a single connection
to the X server, and performs various optimizations on the X protocol to make it faster over low
bandwidth and/or high latency connections. It should be noted that such compression will not increase
the pace of rendering all that much. Its primary purpose is to reduce network load and thus increase
overall network latency. A competing project called DXPC (Differential X Protocol Compression)
has been found to be more efficient at this task. Studies have shown though that in almost all cases ssh
tunneling of X will produce far better results than through any of these specialised pieces of software.

/etc/X11/proxymngr/
X proxy services manager initialisation files. proxymngr is responsible for resolving requests from
xfindproxy (in the xbase—clients package) and other similar clients, starting new proxies when
appropriate, and keeping track of all the available proxy services.

letc/X11/xdm/
X display manager configuration files. xdm manages a collection of X servers, which may be on the
local host or remote machines. It provides services similar to those provided by init, getty, and login
on character—based terminals: prompting for login name and password, authenticating the user, and

running a session. xdm supports XDMCP (X Display Manager Control Protocol) and can also be used
to run a chooser process which presents the user with a menu of possible hosts that offer XDMCP
display management. If the xutils package is installed, xdm can use the sessreg utility to register login
sessions to the system utmp file; this, however, is not necessary for xdm to function.

/etc/X11/xdm/xdm—config
This is the master 'xdm' configuration file. It determines where all other 'xdm' configuration files will
be located. It is almost certain to be left undisturbed.

letc/X11/gdm/
GNOME Display Manager configuration files. gdm provides the equivalent of a "login:" prompt for
X displays— it pops up a login window and starts an X session. It provides all the functionality of
xdm, including XDMCP support for managing remote displays. The greeting window is written using
the GNOME libraries and hence looks like a GNOME application— even to the extent of supporting
themes! By default, the greeter is run as an unprivileged user for security.

/ete/X11/gdm/gdm.conf
This is the primary configuration file for GDM. Through it, users can specify whether they would like
their system to automatically login as a certain user, background startup image and also if they would
like to run their machine as somewhat of a terminal server by using the XDMCP protocol.

/etc/X11/fonts
Home of xfs fonts.

letc/X11/fs/
X font server configuration files. xfs is a daemon that listens on a network port and serves X fonts to
X servers (and thus to X clients). All X servers have the ability to serve locally installed fonts for
themselves, but xfs makes it possible to offload that job from the X server, and/or have a central
repository of fonts on a networked machine running xfs so that all the machines running X servers on
a network do not require their own set of fonts. xfs may also be invoked by users to, for instance,
make available X fonts in user accounts that are not available to the X server or to an already running
system xfs.

letc/X11/fs/config
This is the 'xfs' initialisation file. It specifies the number of clients that are allowed to connect to the
'xfs' server at any one time, the location of log files, default resolution, the location of the fonts, etc.

font server configuration file
$Xorg: config.cpp,v 1.3 2000/08/17 19:54:19 cpgbld Exp $

allow a maximum of 10 clients to connect to this font server
client-1imit = 10

when a font server reaches its limit, start up a new one

clone-self = on

log messages to /var/log/xfs.log (if syslog is not used)

error-file = /var/log/xfs.log

log errors using syslog

use-syslog = on

turn off TCP port listening (Unix domain connections are still permitted)
no—-listen = tcp

paths to search for fonts

catalogue = /usr/lib/X11/fonts/misc/, /usr/lib/X11/fonts/cyrillic/,
/usr/1lib/X11/fonts/100dpi/:unscaled, /usr/1lib/X11/fonts/75dpi/:unscaled,
/usr/1lib/X11/fonts/Typel/, /usr/1lib/X11/fonts/CID,
/usr/lib/X11/fonts/Speedo/, /usr/1lib/X11/fonts/100dpi/,
/usr/1lib/X11/fonts/75dpi/

in decipoints

default-point-size = 120

x1,y1,x2,y2, ...

default-resolutions = 100,100,75,75

font cache control, specified in kB
cache-hi-mark = 2048

cache-low-mark = 1433
cache-balance = 70
letc/X11/twm

Home of configuration files for twm. The original Tabbed Window Manager.

lete/X11/xinit/
xinit configuration files. 'xinit' is a configuration method of starting up an X session that is designed
to used as part of a script. Normally, this is used at larger sites as part of a tailored login process.

/etc/X11/xinit/xinitrc
Global xinitrc file, used by all X sessions started by xinit (startx). Its usage is of course overridden by
a .xinitrc file located in the home directory of a user.

/etc/adduser.conf
'adduser’ configuration. The adduser command can create new users, groups and add existing users to
existing groups. Adding users with adduser is much easier than adding them by hand. Adduser will
choose appropriate UID and GID values, create a home directory, copy skeletal user configuration
from /etc/skel, allow you to set an initial password and the GECOS field. Optionally a custom script
can be executed after this commands. See adduser(8) and adduser.conf(5) for full documentation.

/etc/adjtime
Has parameters to help adjust the software (kernel) time so that it matches the RTC.

/etc/aliases
This is the aliases file — it says who gets mail for whom. It was originally generated by “eximconfig',
part of the exim package distributed with Debian, but it may edited by the mail system administrator.
See exim info section for details of the things that can be configured here. An aliases database file
(aliases.db) is built from the entries in the aliases files by the newaliases utility.

/etc/alternatives
It is possible for several programs fulfilling the same or similar functions to be installed on a single
system at the same time. For example, many systems have several text editors installed at once. This
gives choice to the users of a system, allowing each to use a different editor, if desired, but makes it
difficult for a program to make a good choice of editor to invoke if the user has not specified a
particular preference.

The alternatives system aims to solve this problem. A generic name in the filesystem is shared by all
files providing interchangeable functionality. The alternatives system and the system administrator
together determine which actual file is referenced by this generic name. For example, if the text
editors ed(1) and nvi(1) are both installed on the system, the alternatives system will cause the generic
name /usr/bin/editor to refer to /usr/bin/nvi by default. The system administrator can override this and
cause it to refer to /usr/bin/ed instead, and the alternatives system will not alter this setting until
explicitly requested to do so.

The generic name is not a direct symbolic link to the selected alternative. Instead, it is a symbolic link
to a name in the alternatives directory, which in turn is a symbolic link to the actual file referenced.
This is done so that the system administrator's changes can be confined within the /etc directory.
letc/apt
This is Debian's next generation front—end for the dpkg package manager. It provides the apt—get
utility and APT dselect method that provides a simpler, safer way to install and upgrade packages.
APT features complete installation ordering, multiple source capability and several other unique
features, see the Users Guide in /usr/share/doc/apt/guide.text.gz
/etc/apt/sources.list

deb cdrom: [Debian GNU/Linux 3.0 rO _Woody_ - Official 1386 Binary-7 (20020718)]/
unstable contrib main non-US/contrib non-US/main

deb cdrom: [Debian GNU/Linux 3.0 r0O _Woody_ - Official 1386 Binary-6 (20020718)]/
unstable contrib main non-US/contrib non-US/main

deb cdrom: [Debian GNU/Linux 3.0 r0O _Woody_ - Official 1386 Binary-5 (20020718)]/
unstable contrib main non-US/contrib non-US/main

deb cdrom: [Debian GNU/Linux 3.0 rO _Woody_ - Official 1386 Binary-4 (20020718)]/
unstable contrib main non-US/contrib non-US/main

deb cdrom: [Debian GNU/Linux 3.0 r0O _Woody_ - Official 1386 Binary-3 (20020718)]/
unstable contrib main non-US/contrib non-US/main

deb cdrom: [Debian GNU/Linux 3.0 r0O _Woody_ - Official 1386 Binary-2 (20020718)]/
unstable contrib main non-US/contrib non-US/main

deb cdrom: [Debian GNU/Linux 3.0 r0O _Woody_ - Official 1386 Binary-1 (20020718)]/

unstable contrib main non-US/contrib non-US/main

deb http://security.debian.org/ stable/updates main
Contains a list of apt—sources from which packages may be installed via APT.

/etc/asound.conf
ALSA (Advanced Linux Sound Architecture) configuration file. It is normally created via alsactl or
other third—party sound configuration utilities that may be specific to a distribution such as sndconfig
from Redhat.

/etc/at.deny
Users denied access to the at daemon. The 'at' command allows user to execute programs at an
arbitrary time.

/etc/autoconf
Configuration files for autoconf. 'autoconf’ creates scripts to configure source code packages using
templates. To create configure from configure.in, run the autoconf program with no arguments.
autoconf processes configure.ac with the m4 macro processor, using the Autoconf macros. If you give
autoconf an argument, it reads that file instead of configure.ac and writes the configuration script to
the standard output instead of to configure. If you give autoconf the argument —, it reads the standard
input instead of configure.ac and writes the configuration script on the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with Autoconf;
autoconf reads them first. Then it looks for the optional file acsite.m4 in the directory that contains the
distributed Autoconf macro files, and for the optional file aclocal.m4 in the current directory. Those
files can contain your site's or the package's own Autoconf macro definitions. If a macro is defined in
more than one of the files that autoconf reads, the last definition it reads overrides the earlier ones.
/etc/bash.bashrc
System wide functions and aliases' file for interactive bash shells.
/etc/bash_completion
Programmable completion functions for bash 2.05a.
/etc/chatscripts/provider
This is the chat script used to dial out to your default service provider.
letc/cron.d, /etc/cron.daily, /etc/cron.weekly, /etc/cron.monthly
These directories contain scripts to be executed on a regular basis by the cron daemon.
/etc/crontab
'cron' configuration file. This file is for the cron table to setup the automatic running of system
routines. A cron table can also be established for individual users. The location of these user cron
table files will be explained later on.

/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the “crontab'

command to install the new version when you edit this file.

This file also has a username field, that none of the other crontabs do.

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

25 6 * * * root test -e /usr/sbin/anacron || run-parts —--report /etc/cron.daily
47 6 * * 7 root test —e /usr/sbin/anacron || run-parts —--report /etc/cron.weekly
52 6 1 * * root test —e /usr/sbin/anacron || run-parts —--report /etc/cron.monthly
#

/etc/csh.login

System—wide .login file for csh(1). This file is sourced on all invocations of the shell. It contains
commands that are to be executed upon login and sometimes aliases also.
/etc/csh.logout
System—wide .logout file for csh(1). This file is sourced on all invocations of the shell. It contains
commands that are to be executed upon logout.
/etc/csh.cshre
System—wide .cshrc file for csh(1). This file is sourced on all invocations of the shell. This file should
contain commands to set the command search path, plus other important environment variables. This
file should not contain commands that produce output or assume the shell is attached to a tty.
letc/cups
Configuration files for the Common UNIX Printing System (CUPS). Files here are used to define
client—specific parameters, such as the default server or default encryption settings.
/etc/deluser.conf
'deluser’ configuration files. The deluser command can remove users and groups and remove users
from a given group. Deluser can optionally remove and backup the user's home directory and mail
spool or all files on the system owned by him. Optionally a custom script can also be executed after
each of the commands.
letc/devfs
This daemon sets up the /dev filesystem for use. It creates required symbolic links in /dev and also
creates (if so configured, as is the default) symbolic links to the "old" names for devices.
/etc/devfs/conf.d/
'devfsd' configuration files. This daemon sets up the /dev filesystem for use. It creates required
symbolic links in /dev and also creates (if so configured, as is the default) symbolic links to the "old"
names for devices.
/etc/dhclient.conf, /etc/dhclient—script
'dhclient' configuration file and 'dhclient' script files respectively. It configures your system so that it
may act as a client on a DHCP based network. It is essential to connect to the Internet nowadays.
letc/dict.conf

/etc/dict.conf Written by Bob Hilliard <hilliard@debian.org>

1998/03/20. Last revised Sun, 22 Nov 1998 18:10:04 -0500 This is
the configuration file for /usr/bin/dict. In most cases only the
server keyword need be specified.

This default configuration will try to access a dictd server on

the local host, failing that, it will try the public server. In
many cases this will be slow, so you should comment out the line
for the server that you don't want to use. To use any other

server, enter its IP address in place of "dict.org".

Refer to the dict manpage (man dict) for other options that could

be inserted in here.

server localhost
server dict.org

dict is a client for the Dictionary Server Protocol (DICT), a TCP transaction based query/response

protocol that provides access to dictionary definitions from a set of natural language dictionary
databases.
/etc/dosemu.conf
Configuration file for the Linux DOS Emulator. DOSEMU is a PC Emulator application that allows
Linux to run a DOS operating system in a virtual x86 machine. This allows you to run many DOS
applications. It includes the FreeDOS kernel, color text and full keyboard emulation (via hotkeys) via
terminal, built—in X support, IBM character set font, graphics capability at the console with most
compatible video cards, DPMI support so you can run DOOM, CDROM support, builtin IPX and
pktdrvr support. Note — 'dosemu’ is simply a ported version of Corel's own PC-DOS.
/etc/email—addresses
Part of the exim package. This file contains email addresses to use for outgoing mail. Any local part
not in here will be qualified by the system domain as normal. It should contain lines of the form:

user: someonelisp.com
otheruser: someoneelse@anotherisp.com

Exim is an MTA that is considered to be rather easier to configure than smail or sendmail. It is a
drop—in replacement for sendmail, mailq and rsmtp. Advanced features include the ability to reject
connections from known spam sites, and an extremely efficient queue processing algorithm.
/etc/esound.conf
ESD configuration files. The Enlightened sound daemon is designed to mix together several digitized
audio streams for playback by a single device. Like nasd, artsd and rplay it also has the capability to
play sounds remotely.
/etc/exports
The control list of systems who want to access the system via NFS, a the list of directories that you
would like to share and the permissions allocated on each share.

/etc/exports: the access control list for filesystems which may be
exported to NFS clients. See exports(5).
LTS-begin #4#

#

The lines between the 'LTS-begin' and the 'LTS-end' were added

on: Sun Feb 23 05:54:17 EST 2003 by the ltsp installation script.

For more information, visit the ltsp homepage

at http://www.ltsp.org

#

/opt/ltsp/1386 192.168.0.0/255.255.255.0 (ro, no_root_squash)
/var/opt/ltsp/swapfiles 192.168.0.0/255.255.255.0 (rw, no_root_squash)
#

The following entries need to be uncommented if you want

Local App support in ltsp

#

#/home 192.168.0.0/255.255.255.0 (rw, no_root_squash)

LTS—end

letc/fdprm
Floppy disk parameter table. Describes what different floppy disk formats look like. Used by
setfdprm.

letc/fstab
The configuration file for 'mount' and now 'supermount'’. It lists the filesystems mounted automatically
at startup by the mount —a command (in /etc/rc or equivalent startup file). Under Linux, also contains
information about swap areas used automatically by swapon —a.

/etc/fstab: static file system information.

The following is an example. Please see fstab(5) for further details.
Please refer to mount (1) for a complete description of mount options.

Format:
<file system> <mount point> <type> <options> <dump> <pass>

dump (8) uses the <dump> field to determine which file systems need
to be dumped. fsck(8) uses the <pass> column to determine which file
systems need to be checked--the root file system should have a 1 in
this field, other file systems a 2, and any file systems that should
not be checked (such as MS-DOS or NFS file systems) a O.

The “sw' option indicates that the swap partition is to be activated

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

with "~swapon -a'.
/dev/hda2 none swap sw 0 0

The "bsdgroups' option indicates that the file system is to be mounted
with BSD semantics (files inherit the group ownership of the directory
in which they live). "ro' can be used to mount a file system read-only.

/dev/hda3 / ext2 defaults 0 1

/dev/hda5 /home ext2 defaults 0 2

/dev/hda6 /var ext2 defaults 0 2

/dev/hda7 /usr ext2 defaults,ro 0 2

/dev/hda8 /usr/local ext2 defaults,bsdgroups 0 2

The "noauto' option indicates that the file system should not be mounted
with "mount -a'. “user' indicates that normal users are allowed to mount

the file system.

/dev/cdrom /cdrom iso09660 defaults,noauto,ro,user 0 0
/dev/fd0 /floppy minix defaults,noauto,user 0 0
/dev/fdl /floppy minix defaults,noauto,user 0 0

NFS file systems: server:

/export/usr /usr nfs defaults 0 0

proc file system:

proc /proc proc defaults 0 0

[etc/ftpaccess

Determines who might get ftp—access to your machine.
[etc/ftpchroot

List of ftp users that need to be chrooted.
letc/ftpuser

List of disallowed ftp users.
letc/gateways

Lists gateways for 'routed'.
/etc/gettydefs

Configures console—logins.
/etc/gnome—vfs—mime—magic

MIME magic patterns as used by the Gnome VFS library.
letc/group

Similar to /etc/passwd. It lists the configured user groups and who belongs to them.
letc/group—

Old /etc/group file.
/etc/gshadow

Contains encrypted forms of group passwords.
/etc/gshadow—

Old /etc/gshadow file.
/etc/hostname

Contains the hostname of your machine (can be fully qualified or not).

/etc/host.conf
Determines the search order for look—ups (usually hosts bind, i.e. "check /etc/hosts first and then look
for a DNS").

/etc/hosts
This file is used to define a system name and domain combination with a specific IP address. This file
needs to always contain an entry for an IP address, if the machine is connected to the network.

etherconf DEBCONF AREA. DO NOT EDIT THIS AREA OR INSERT TEXT BEFORE IT.
127.0.0.1 localhost ::1 localhost

ip6-localhost ip6-loopback

fe00::0 ip6-localnet

£ff00::0 ip6-mcastprefix

f£f02::1 ip6-allnodes

£ff02::2 ip6-allrouters

£f£f02::3 ip6-allhosts

192.168.0.99 debian.localdomain.com debian

END OF DEBCONF AREA. PLACE YOUR EDITS BELOW; THEY WILL BE PRESERVED.
192.168.0.1 ws001

/etc/hosts.allow
Part of the tcp—wrappers system to control access to your machine's services. It lists hosts that are
allowed to access the system and specific daemons.

/etc/hosts.allow: list of hosts that are allowed to access the

system.

See the manual pages hosts_access (5), hosts_options (5)

and /usr/doc/netbase/portmapper.txt.gz

#

Example: ALL: LOCAL @some_netgroup

ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

#

If you're going to protect the portmapper use the name "portmap"
for the daemon name. Remember that you can only use the keyword
"ALL" and IP addresses (NOT host or domain names) for the

portmapper. See portmap (8) and /usr/doc/portmap/portmapper.txt.gz
for further information.

bootpd: 0.0.0.0 in.tftpd: 192.168.0.
portmap: 192.168.0.

rpc.mountd: 192.168.0.

rpc.nfsd: 192.168.0.

gdm: 192.168.0.

nasd: 192.168.0.

/etc/hosts.deny
part of the tcp—wrappers system to control access to your machine's services. It lists hosts that are not
allowed to access the system.

Example: ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

If you're going to protect the portmapper use the name "portmap"
for the daemon name. Remember that you can only use the keyword
"ALL" and IP addresses (NOT host or domain names) for the
portmapper. See portmap(8) and /usr/doc/portmap/portmapper.txt.gz
for further information.

R

The PARANOID wildcard matches any host whose name does not match

its address. You may wish to enable this to ensure any programs
that don't validate looked up hostnames still leave understandable
logs. In past versions of Debian this has been the default.

ALL: PARANOID

4 o o

/etc/httpd
Apache configuration files. Apache is a versatile, high—performance HTTP server. The most popular
server in the world, Apache features a modular design and supports dynamic selection of extension
modules at runtime. Its strong points are its range of possible customization, dynamic adjustment of
the number of server processes, and a whole range of available modules including many
authentication mechanisms, server—parsed HTML, server—side includes, access control, CERN httpd
metafiles emulation, proxy caching, etc. Apache also supports multiple virtual homing.
/etc/identd.conf
TCP/IP IDENT protocol server. It implements the TCP/IP proposed standard IDENT user
identification protocol (RFC 1413). identd operates by looking up specific TCP/IP connections and
returning the username of the process owning the connection. It can also return other information
besides the username.

/etc/identd.conf - an example configuration file

#—— The syslog facility for error messages
syslog:facility = daemon

#-— User and group (from passwd database) to run as
server:user = nobody

#-— Override the group id
server:group = kmem

#-— What port to listen on when started as a daemon or from /etc/inittab
server:port = 113

#-— The socket backlog limit
server:backlog = 256

#-— Where to write the file containing our process id
server:pid-file = "/var/run/identd/identd.pid"

#-—— Maximum number of concurrent requests allowed (0 = unlimited)
server:max-requests = 0

#-— Enable some protocol extensions like "VERSION" or "QUIT"
protocol:extensions = enabled

#-— Allow multiple queries per connection
protocol:multiquery = enabled

#-— Timeout in seconds since connection or last query. Zero = disable
protocol:timeout = 120

#-— Maximum number of threads doing kernel lookups
kernel:threads = 8

#-— Maximum number of queued kernel lookup requests
kernel:buffers = 32

#-— Maximum number of time to retry a kernel lookup in case of failure

kernel:attempts = 5

#-—— Disable username lookups (only return uid numbers)
result:uid-only = no

#—-— Enable the ".noident" file
result:noident = enabled

#-— Charset token to return in replies
result:charset = "US-ASCII"

#-— Opsys token to return in replies
result:opsys = "UNIX"

#-— Log all request replies to syslog (none == don't)

result:syslog-level = none

#-— Enable encryption (only available if linked with a DES library)

result:encrypt = no

#-— Path to the DES key file (only available if linked with a DES library)

encrypt:key-file = "/usr/local/etc/identd.key"

#-— Include a machine local configuration file
include = /etc/identd.conf

/etc/inetd.conf
Configuration of services that are started by the INETD TCP/IP super server. 'inetd' is now
deprecated. 'xinetd' has taken its place. See /etc/xinet.conf for further details.

/etc/inetd.conf: see inetd(8) for further information.
Internet server configuration database

Lines starting with "#:LABEL:" or "#<off>#" should not
be changed unless you know what you are doing!

If you want to disable an entry so it isn't touched during
package updates Jjust comment it out with a single '#' character.

Packages should modify this file by using update—inetd(8)
<service_name> <sock_type> <proto>

<flags> <user> <server_path>
<args>

S S S e e S o o e e o o o e e o o

#:INTERNAL: Internal services

#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
discard stream tcp nowait root internal
discard dgram udp wait root internal
daytime stream tcp nowait root internal
#daytime dgram udp wait root internal

time stream tcp nowait root internal

/etc/init.d

#time dgram udp wait root internal

#:STANDARD: These are standard services.

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd

telnet stream tcp nowait telnetd.telnetd /usr/sbin/tcpd
/usr/sbin/in.telnetd

#:MAIL: Mail, news and uucp services.

smtp stream tcp nowait mail /usr/sbin/exim exim -bs

imap2 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd
imap3 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd

#:INFO: Info services

ident stream tcp wait identd /usr/sbin/identd identd

finger stream tcp nowait nobody /usr/sbin/tcpd
/usr/sbin/in.fingerd

#:BOOT: Tftp service is provided primarily for booting.
#Most sites run this only on machines acting as "boot servers."
tftp dgram udp wait nobody /usr/sbin/tcpd

/usr/sbin/in.tftpd -s /tftpboot

Order of scripts run in /etc/rc?.d

Overview.

All scripts executed by the init system are located in /etc/init.d.
The directories /etc/rc?.d (? =S, 0 .. 6) contain relative links to
those scripts. These links are named S<2-digit-number><
original-name> or K<2-digit-number><original-name>.

If a scripts has the ".sh" suffix it is a bourne shell script and
MAY be handled in an optimized manner. The behaviour of executing the
script in an optimized way will not differ in any way from it being
forked and executed in the regular way.

The following runlevels are defined:

N System bootup (NONE) .

S Single user mode (not to be switched to directly)
0 halt

1 single user mode

2 5 multi user mode

6 reboot

Boot.

When the systems boots, the /etc/init.d/rcS script is executed. It
in turn executes all the S* scripts in /etc/rcS.d in alphabetical
(and thus numerical) order. The first argument passed to the
executed scripts is "start". The runlevel at this point is

"N" (none) .

Only things that need to be run once to get the system in a consistent
state are to be run. The rcS.d directory is NOT meant to replace rc.local.
One should not start daemons in this runlevel unless absolutely

necessary. Eg, NFS might need the portmapper, so it is OK to start it
early in the boot process. But this is not the time to start the

squid proxy server.
Going multiuser.

After the rcS.d scripts have been executed, init switches to the
default runlevel as specified in /etc/inittab, usually "2".

Init then executes the /etc/init.d/rc script which takes care of
starting the services in /etc/rc2.d.

Because the previous runlevel is "N" (none) the /etc/rc2.d/KXXxxxXx
scripts will NOT be executed - there is nothing to stop yet,
the system is busy coming up.

If for example there is a service that wants to run in runlevel 4

and ONLY in that level, it will place a KXXxxxx script in
/etc/rc{2,3,5}.d to stop the service when switching out of runlevel 4.
We do not need to run that script at this point.

The /etc.rc2.d/SXXxxxx scripts will be executed in alphabetical
order, with the first argument set to "start".

Switching runlevels.

When one switches from (for example) runlevel 2 to runlevel 3,
/etc/init.d/rc will first execute in alphabetical order all K
scripts for runlevel 3 (/etc/rc3.d/KXXxxxx) with as first argument
"stop" and then all S scripts for runlevel 3 (/etc/rc3.d/SXXxXxXX)
with as first argument "start".

As an optimization, a check is made for each "service" to see if

it was already running in the previous runlevel. If it was, and there
is no K (stop) script present for it in the new runlevel, there is

no need to start it a second time so that will not be done.

On the other hand, if there was a K script present, it is assumed the
service was stopped on purpose first and so needs to be restarted.

We MIGHT make the same optimization for stop scripts as well-

if no S script was present in the previous runlevel, we can assume
that service was not running and we don't need to stop it either.
In that case we can remove the "coming from level N" special case
mentioned above in 2). But right now that has not been implemented.

Single user mode.

Switching to single user mode is done by switching to runlevel 1.
That will cause all services to be stopped (assuming they all have
a K script in /etc/rcl.d). The runlevel 1 scripts will then switch
to runlevel "S" which has no scripts - all it does is spawn

a shell directly on /dev/console for maintenance.

Halt/reboot

Going to runlevel 0 or 6 will cause the system to be halted or rebooted,
respectively. For example, if we go to runlevel 6 (reboot) first

all /etc/rc6.d/KXXxxxx scripts will be executed alphabetically with
"stop" as the first argument.

Then the /etc/rc6.d/SXXxxxx scripts will be executed alphabetically
with "stop" as the first argument as well. The reason is that there
is nothing to start any more at this point - all scripts that are

run are meant to bring the system down.

In the future, the /etc/rc6.d/SXXxxxx scripts MIGHT be moved to
/etc/rc6.d/KlXXxxxx for clarity.

/etc/inittab
Boot—-time system configuration/initialization script. Tells init how to handle runlevels. It sets the
default runlevel. This is run first except when booting in emergency (—b) mode. It also enables a user
to startup a getty session on an external device such as the serial ports. To add terminals or dial—in
modem lines to a system, just add more lines to /etc/inittab, one for each terminal or dial—in line. For
more details, see the manual pages init, inittab, and getty. If a command fails when it starts, and init is
configured to restart it, it will use a lot of system resources: init starts it, it fails, init starts it, it fails,
and so on. To prevent this, init will keep track of how often it restarts a command, and if the
frequency grows to high, it will delay for five minutes before restarting again. /etc/inittab also has
some special features that allow init to react to special circumstances. powerwait Allows init to shut
the system down, when the power fails. This assumes the use of a UPS, and software that watches the
UPS and informs init that the power is off. ctrlaltdel Allows init to reboot the system, when the user
presses ctrl-alt—del on the console keyboard. Note that the system administrator can configure the
reaction to ctrl—alt—del to be something else instead, e.g., to be ignored, if the system is in a public
location. sysinit Command to be run when the system is booted. This command usually cleans up
/tmp, for example. The list above is not exhaustive. See your inittab manual page for all possibilities,
and for details on how to use the ones above. To set (or reset) initial terminal colours. The following
shell script should work for VGA consoles: fornin 1245 6 7 8; do setterm —fore yellow —bold on
—back blue —store > /dev/tty$n done Substitute your favorite colors, and use /dev/ttyS$n for serial
terminals. To make sure they are reset when people log out (if they've been changed) replace the
references to getty (or mingetty or uugetty or whatever) in /etc/inittab with references to
/sbin/mygetty. #!/bin/sh setterm —fore yellow —bold on —back blue —store > $1 exec /sbin/mingetty
$@ An example /etc/inittab is provided below.

/etc/inittab: init (8) configuration.

$Id: etc.xml,v 1.10 2004/02/03 21:42:57 binh Exp $

The default runlevel. id:2:initdefault:

Boot-time system configuration/initialization script.

This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/zrcS

What to do in single-user mode.

~~:S:wait:/sbin/sulogin

/etc/init.d executes the S and K scripts upon change

of runlevel.

4 o o 3 o

Runlevel 0 is halt.

Runlevel 1 is single-user.

Runlevels 2-5 are multi-user.

Runlevel 6 is reboot.

10:0:wait:/etc/init.d/rc 0 1l:1:wait:/etc/init.d/rc 1
12:2:wait:/etc/init.d/rc 2 13:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4 15:5:wait:/etc/init.d/rc 5
16:6:wait:/etc/init.d/rc 6

Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin

What to do when CTRL-ALT-DEL is pressed.
ca:12345:ctrlaltdel:/sbin/shutdown -tl —-a —-r now

Action on special keypress (ALT-UpArrow) .

#kb: :kbrequest:/bin/echo "Keyboard Request

#-—-edit /etc/inittab to let this work."

What to do when the power fails/returns.
pf::powerwait:/etc/init.d/powerfail start

4 S S 3 e S

pn: :powerfailnow:/etc/init.d/powerfail now

po: :powerokwait:/etc/init.d/powerfail stop

/sbin/getty invocations for the runlevels.

#

The "id" field MUST be the same as the last

characters of the device (after "tty").

#

Format:

<id>:<runlevels>:<action>:<process>

#

Note that on most Debian systems tty7 is used by the X Window System,

so if you want to add more getty's go ahead but skip tty7 if you run X.
#

1:2345:respawn:/sbin/getty 38400 ttyl 2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3 4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5 6:23:respawn:/sbin/getty 38400 tty6

Example how to put a getty on a serial line (for a terminal)

#

#T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100
#T1:23:respawn:/sbin/getty -L ttySl 9600 vt100
Example how to put a getty on a modem line.
#

#T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3

Undocumented features

The letters A-C can be used to spawn a daemon listed in /etc/inittab. For
example, assuming you want to start getty on a port to receive a call, but
only after receiving a voice call first (and not all the time). Furthermore,
you want to be able to receive a data or a fax call and that when you get
the voice message you'll know which you want. You insert two new lines

in /etc/inittab, each with its own ID, and each with a runlevel such as A
for data and B for fax. When you know which you need, you simply spawn the
appropriate daemon by calling 'telinit A' or 'telinit B'.

The appropriate getty is put on the line until the first call is received.
When the caller terminates the connection, the getty drops because, by
definition, on demand will not respawn. The other two letters, S and Q, are
special. S brings you system to maintenance mode and is the same as changing
state to runlevel 1. The Q is used to tell init to reread inittab. The
/etc/inittab file can be changed as often as required, but will only be read
under certain circumstances: -One of its processes dies (do you need to
respawn another?) -On a powerful signal from a power daemon (or a command
line) -When told to change state by telinit The Q argument tells init to
reread the /etc/inittab file. Even though it is called the System V runlevel
system runlevels 7-9 are legitimate runlevels that can be used if necessary.
The administrator must remember to alter the inittab file though and also to
create the required rc?.d files.

/etc/inputrc
Global inputre for libreadline. Readline is a function that gets a line from a user and automatically
edits it.

/etc/isapnp.conf
Configuration file for ISA based cards. This standard is virtually redundant in new systems. The
'isapnptools' suite of ISA Plug—And—Play configuration utilities is used to configure such devices.
These programs are suitable for all systems, whether or not they include a PnP BIOS. In fact, PnP
BIOS adds some complications because it may already activate some cards so that the drivers can find
them, and these tools can unconfigure them, or change their settings causing all sorts of nasty effects.

/etc/isdn
ISDN configuration files.

letclissue

Output by getty before the login prompt. Usually contains a short description or welcoming message
to the system. The contents are up to the system administrator. Debian GNU/s 3.0 \n \l

/etc/issue.net
Presents the welcome screen to users who login remotely to your machine (whereas /etc/issue
determines what a local user sees on login). Debian GNU/%s 3.0 %h

letc/kde
KDE initialization scripts and KDM configuration.

/etc/kde/kdm
Location for the K Desktop Manager files. kdm manages a collection of X servers, which may be on
the local host or remote machines. It provides services similar to those provided by init, getty, and
login on character—based terminals: prompting for login name and password, authenticating the user,
and running a session. kdm supports XDMCP (X Display Manager Control Protocol) and can also be
used to run a chooser process which presents the user with a menu of possible hosts that offer
XDMCP display management.

/etc/kderc
System wide KDE initialization script. Commands here executed every time the KDE environment is
loaded. It's a link to /etc/kde2/system.kdeglobals

[Directories]

dir_config=/etc/kde2

dir html=/usr/share/doc/kde/HTML
dir_cgi=/usr/lib/cgi-bin
dir_apps=/usr/share/applnk
dir_mime=/usr/share/mimelnk
dir_services=/usr/share/services
dir_servicetypes=/usr/share/servicetypes
[General]
TerminalApplication=x-terminal-emulator

/etc/ld.so.conf, /etc/ld.so.cache
/etc/ld.so.conf is a file containing a list of colon, space, tab, newline, or comma separated
directories in which to search for libraries. /etc/ld.so.cache containing an ordered list of
libraries found in the directories specified in /etc/ld.so.conf. This file is not in human readable
format, and is not intended to be edited.
'ldconfig' creates the necessary links and cache (for use by the run—time linker, 1d.so) to the
most recent shared libraries found in the directories specified on the command line, in the file
/etc/ld.so.conf, and in the trusted directories (/ust/lib and /lib). 'Idconfig' checks the header
and file names of the libraries it encounters when determining which versions should have
their links updated. 1dconfig ignores symbolic links when scanning for libraries.
'ldconfig' will attempt to deduce the type of ELF libs (ie. libc5 or libc6/glibc) based on what
C libs if any the library was linked against, therefore when making dynamic libraries, it is
wise to explicitly link against libc (use —Ic).
Some existing libs do not contain enough information to allow the deduction of their type,
therefore the /etc/ld.so.conf file format allows the specification of an expected type. This is
only used for those ELF libs which we can not work out. The format is like this
"dirname=TYPE", where type can be libc4, libc5 or libc6. (This syntax also works on the
command line). Spaces are not allowed. Also see the —p option.
Directory names containing an = are no longer legal unless they also have an expected type
specifier.
'ldconfig' should normally be run by the super—user as it may require write permission on
some root owned directories and files. It is normally run automatically at bootup or manually
whenever new shared libraries are installed.

/ust/X11R6/1ib

X libraries.

fusr/local/lib

Local libraries.

/etc/lilo.conf

Configuration file for the Linux boot loader 'lilo". 'lilo' is the original OS loader and can load Linux
and others. The 'lilo' package normally contains lilo (the installer) and boot-record—images to install
Linux, OS/2, DOS and generic Boot Sectors of other Oses. You can use Lilo to manage your Master
Boot Record (with a simple text screen, text menu or colorful splash graphics) or call 'lilo' from other
boot—loaders to jump—start the Linux kernel.

Prompt #Prompt user to select
OS choice at boot timeout=300 # Amount of time to wait before default OS
started (in ms)
default=Debian4 #Default OS to be loaded
vga=normal #VGA mode
boot=/dev/had #location of MBR
map=/boot/map #location of kernel
install=/boot/boot-bmp.b #File to be installed as boot sector
bitmap=/boot/debian.bmp #LILO boot image
bmp-table=30p, 100p,1,10 #Colours
selectable bmp-colors=13,,0,1,,0 #Colours chosen
1ba32 #Required on most new systems to overcome
#1024 cylinder problem
image=/vmlinuz #name of kernel
image label=Debian #a label
read-only #file system to be mounted read only
root=/dev/hda6 #location of root filesystem

image=/boot/bzImage
label=Debian4
read-only
root=/dev/hda6

image=/mnt/redhat/boot/vmlinuz

label=Redhat
initrd=/mnt/redhat/boot/initrd-2.4.18-14.1img
read-only

root=/dev/hda5

vga=788

append=" hdc=ide-scsi hdd=ide-scsi"

image=/mnt/mandrake/boot/vmlinuz
label="Mandrake"

root=/dev/hda7
initrd=/mnt/mandrake/boot/initrd.img
append="devfs=mount hdc=ide-scsi
acpi=off quiet"

vga=788

read-only

other=/dev/hda2
table=/dev/hda
loader=/boot/chain.b
label=FBSD
other=/dev/hdal
label=Windows
table=/dev/hda

other=/dev/£d0

label=floppy unsafe

/etc/local.gen
This file lists locales that you wish to have built. You can find a list of valid supported locales at
/usr/share/i18n/SUPPORTED. Other combinations are possible, but may not be well tested. If you
change this file, you need to re—run locale—gen.

/etc/locale.alias
Locale name alias data base.

/etc/login.defs
Configuration control definitions for the login package. An inordinate number of attributes can be
altered via this single file such as the location of mail, delay in seconds after a failed login, enabling
display of fail log information, display of unknown username login failures, shell environment
variables, etc....

/etc/logrotate.conf
The logrotate utility is designed to simplify the administration of log files on a system which
generates a lot of log files. Logrotate allows for the automatic rotation compression, removal and
mailing of log files. Logrotate can be set to handle a log file daily, weekly, monthly or when the log
file gets to a certain size. Normally, logrotate runs as a daily cron job.

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp, or btmp —-— we'll rotate them here
/var/log/wtmp {

monthly

create 0664 root utmp

rotate 1

}

/var/log/btmp {
missingok
monthly
create 0664 root utmp
rotate 1

}

system-specific logs may be configured here
letc/ltrace.conf
Configuration file for ltrace (Library Call Tracer). It tracks runtime library calls in dynamically linked
programs. 'Itrace' is a debugging program which runs a specified command until it exits. While the
command is executing, Itrace intercepts and records the dynamic library calls which are called by the
executed process and the signals received by that process. It can also intercept and print the system
calls executed by the program. The program to be traced need not be recompiled for this, so you can

use it on binaries for which you don't have the source handy. You should install ltrace if you need a
sysadmin tool for tracking the execution of processes.

/etc/magic
Magic local data and configuration file for the file(1) command. Contains the descriptions of various
file formats based on which file guesses the type of the file. Insert here your local magic data. Format
is described in magic(5).

/etc/mail.rc
Initialization file for 'mail'. 'mail' is an intelligent mail processing system which has a command
syntax reminiscent of ed with lines replaced by messages. It's basically a command line version of
Microsoft Outlook.

/etc/mailcap
'metamail’ capabilities file. The mailcap file is read by the metamail program to determine how to
display non—text at the local site. The syntax of a mailcap file is quite simple, at least compared to
termcap files. Any line that starts with "#" is a comment. Blank lines are ignored. Otherwise, each line
defines a single mailcap entry for a single content type. Long lines may be continued by ending them
with a backslash character, \. Each individual mailcap entry consists of a content—type specification, a
command to execute, and (possibly) a set of optional "flag" values.

/etc/mailcap.order
The mailcap ordering specifications. The order of entries in the /etc/mailcap file can be altered by
editing the /etc/mailcap.order file. Each line of that file specifies a package and an optional mime
type. Mailcap entries that match will be placed in the order of this file. Entries that don't match will be
placed later.

/etc/mailname
Mail server hostname. Normally the same as the hostname.

/etc/menu, /etc/menu—methods
The menu package was inspired by the install-fvwm2-menu program from the old fvwm?2 package.
However, menu tries to provide a more general interface for menu building. With the update—menus
command from this package, no package needs to be modified for every X window manager again,
and it provides a unified interface for both text—and X—oriented programs.

When a package that wants to add something to the menu tree gets installed, it will run update—menus
in its postinstall script. Update—menus then reads in all menu files in /etc/menu/ /ust/lib/menu and
/usr/lib/menu/default, and stores the menu entries of all installed packages in memory. Once that has
been done, it will run the menu—methods in /etc/menu—methods/*, and pipe the information about the
menu entries to the menu—methods on stdout, so that the menu—methods can read this. Each Window
Manager or other program that wants to have the debian menu tree, will supply a menu—method script
in /etc/menu—methods/. This menu—method then knows how to generate the startup—file for that
window manager. To facilitate this task for the window—manager maintainers, menu provides a
install-menu program. This program can generate the startup files for just about every window
manager.

/etc/mgetty+sendfax
Configuration files for use of mgetty as the interface on the serial port. The mgetty routine special
routine has special features for handling things such as dial up connections and fax connections.

/etc/mime.types
MIME-TYPES and the extensions that represent them. This file is part of the "mime—support"
package. Note: Compression schemes like "gzip", "bzip", and "compress" are not actually
"mime—types". They are "encodings" and hence must _not_ have entries in this file to map their
extensions. The "mime—type" of an encoded file refers to the type of data that has been encoded, not
the type of the encoding.

/etc/minicom

"minicom’ configuration files. 'minicom'’ is a communication program which somewhat resembles the

shareware program TELIX but is free with source code and runs under most unices. Features include

dialling directory with auto—redial, support for UUCP-style lock files on serial devices, a separate

script language interpreter, capture to file, multiple users with individual configurations, and more.
/etc/modules

List of modules to be loaded at startup.

/etc/modules: kernel modules to load at boot time.

to be loaded at boot time, one per line. Comments begin with
a "#", and everything on the line after them are ignored.

unix

af_packet

via-rhine

cmpci

ne2k-pci

nvidia

#
#
This file should contain the names of kernel modules that are
#
#

/etc/modules.conf

This file is automatically generated by update-modules"

Please do not edit this file directly. If you want to change or add
anything please take a look at the files in /etc/modutils and read
the manpage for update-modules.

update-modules: start processing /etc/modutils/Okeep

DO NOT MODIFY THIS FILE!

This file is not marked as conffile to make sure if you upgrade modutils
it will be restored in case some modifications have been made.

The keep command is necessary to prevent insmod and friends from ignoring
the builtin defaults of a path-statement is encountered. Until all other
packages use the new "add path'-statement this keep-statement is essential
to keep your system working

keep

S S S S e o S e Se o o o 3

update-modules: end processing /etc/modutils/Okeep

update-modules: start processing /etc/modutils/actions
Special actions that are needed for some modules

The BTTV module does not load the tuner module automatically,
so do that in here

post—-install bttv insmod tuner

post-remove bttv rmmod tuner

update-modules: end processing /etc/modutils/actions

update-modules: start processing /etc/modutils/aliases
Aliases to tell insmod/modprobe which modules to use

Uncomment the network protocols you don't want loaded:
alias net-pf-1 off # Unix

alias net-pf-2 off # IPv4

alias net-pf-3 off # Amateur Radio AX.25

alias net-pf-4 off # IPX

alias net-pf-5 off # DDP / appletalk

alias net-pf-6 off # Amateur Radio NET/ROM
alias net-pf-9 off # X.25

alias net-pf-10 off # IPv6

alias net-pf-11 off # ROSE / Amateur Radio X.25 PLP
alias net-pf-19 off # Acorn Econet

alias char-major-10-175 agpgart

alias char-major-10-200 tun

alias char-major-81 bttv

alias char-major-108 ppp_generic

alias /dev/ppp pPpPp_generic

alias tty-1ldisc-3 ppp_async

alias tty-ldisc-14 ppp_synctty

alias ppp-compress—21 bsd_comp
alias ppp-compress—-24 ppp_deflate
alias ppp-compress—-26 ppp_deflate

Crypto modules (see http://www.kerneli.org/)
alias loop-xfer—-gen-0 loop_gen

alias loop—-xfer-3 loop_fish2

alias loop—-xfer—-gen-10 loop_gen
alias cipher-2 des
alias cipher-3 fish2
alias cipher-4 blowfish
alias cipher-6 idea
alias cipher-7 serp6f
alias cipher-8 marsb6
alias cipher-11 rc62
alias cipher-15 dfc2
alias cipher-16 rijndael
alias cipher-17 rcb

update-modules: end processing /etc/modutils/aliases

update-modules: start processing /etc/modutils/ltmodem—-2.4.18

1lt_drivers: autoloading and insertion parameter usage

alias char-major-62 1lt_serial

alias /dev/tts/LT0 1lt_serial

alias /dev/modem lt_serial

options 1lt_modem vendor_id=0x115d device_1id=0x0420 Forced=3,0x130,0x2f8
section for lt_drivers ends

update-modules: end processing /etc/modutils/ltmodem-2.4.18
update-modules: start processing /etc/modutils/paths

This file contains a list of paths that modprobe should scan,
beside the once that are compiled into the modutils tools

themselves.

update-modules: end processing /etc/modutils/paths

update-modules: start processing /etc/modutils/ppp

alias /dev/ppp pPpPp_generic
alias char-major-108 ppp_generic
alias tty-ldisc-3 ppp_async
alias tty-ldisc-14 ppp_synctty
alias ppp-compress—21 bsd_comp

alias ppp-compress—24 ppp_deflate
alias ppp-compress—26 ppp_deflate

update-modules: end processing /etc/modutils/ppp

update-modules: start processing /etc/modutils/setserial

#

This is what I wanted to do, but logger is in /usr/bin, which isn't
loaded when the module is first loaded into the kernel at boot time!
#

#post-install serial /etc/init.d/setserial start |

#logger -p daemon.info -t "setserial-module reload"

#pre-remove serial /etc/init.d/setserial stop |

#logger -p daemon.info -t "setserial-module uload"

#

alias /dev/tts serial
alias /dev/tts/0 serial
alias /dev/tts/1 serial
alias /dev/tts/2 serial
alias /dev/tts/3 serial

post—install serial /etc/init.d/setserial modload > /dev/null 2> /dev/null
pre-remove serial /etc/init.d/setserial modsave > /dev/null 2> /dev/null

update-modules: end processing /etc/modutils/setserial

update-modules: start processing /etc/modutils/arch/i1386
alias parport_lowlevel parport_pc

alias char-major-10-144 nvram

alias binfmt-0064 binfmt_aout

alias char-major-10-135 rtc

update-modules: end processing /etc/modutils/arch/i386

/etc/modutils
These utilities are intended to make a Linux modular kernel manageable for all users, administrators
and distribution maintainers.

/etc/mtools
Debian default mtools configuration file. The mtools series of commands work with MS—DOS files
and directories on floppy disks. This allows you to use Linux with MS—DOS formatted diskettes on
DOS and Windows systems.

/etc/manpath.conf
This file is used by the man_db package to configure the man and cat paths. It is also used to provide
a manpath for those without one by examining their PATH environment variable. For details see the
manpath(5) man page.

/etc/mediaprm
Was formally named /etc/fdprm. See /etc/fdprm for further details.

/etc/motd
The message of the day, automatically output after a successful login. Contents are up to the system
administrator. Often used for getting information to every user, such as warnings about planned
downtimes. Linux debian.localdomain.com 2.4.18 #1 Sat Mar 15 00:17:39 EST 2003 1686 unknown
Most of the programs included with the Debian GNU/Linux system are freely redistributable; the
exact distribution terms for each program are described in the individual files in
/usr/share/doc/*/copyright Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the
extent permitted by applicable law.

/etc/mtab
List of currently mounted filesystems. Initially set up by the bootup scripts, and updated automatically
by the mount command. Used when a list of mounted filesystems is needed, e.g., by the df command.
This file is sometimes a symbolic link to /proc/mounts.

/etc/networks

List of networks that the system is currently located on. For example, 192.168.0.0.
/etc/nsswitch.conf
System Database/Name Service Switch configuration file.
/etc/oss.conf
OSS (Open Sound System) configuration file.
/etc/pam.d/
This directory is the home of the configuration files for PAMs, Pluggable Authentication Modules.
letc/postfix/
Holds your postfix configuration files. Postfix is now the MTA of choice among Linux distributions.
It is sendmail-compatible, offers improved speed over sendmail, ease of administration and security.
It was originally developed by IBM and was called the IBM Secure Mailer and is used in many large
commercial networks. It is now the de—facto standard.
letc/ppp/
The place where your dial—up configuration files are placed. More than likely to be created by the text
menu based pppconfig or other GUI based ppp configuration utilities such as kppp or gnome—ppp.
/etc/pam.conf
Most programs use a file under the /etc/pam.d/ directory to setup their PAM service modules. This file
1s and can be used, but is not recommended.
/etc/paper.config
Paper size configuration file.
letc/papersize
Default papersize.
letc/passwd
This is the 'old' password file, It is kept for compatibility and contains the user database, with fields
giving the username, real name, home directory, encrypted password, and other information about
each user. The format is documented in the passwd man(ual) page.

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync games:x:5:100:games:/usr/games:/bin/sh
man:x:6:100:man: /var/cache/man:/bin/sh lp:x:7:7:1p:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh proxy:x:13:13:proxy:/bin:/bin/sh
postgres:x:31:32:postgres:/var/lib/postgres:/bin/sh
www-data:x:33:33:www—data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
operator:x:37:37:0perator:/var:/bin/sh
list:x:38:38:SmartlList:/var/list:/bin/sh irc:x:39:39:ircd:/var:/bin/sh
gnats:x:41:41:Gnats Bug—-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534 :nobody: /home: /bin/sh
binh:x:1000:1000:,,, : /home/binh:/bin/bash
identd:x:100:65534::/var/run/identd: /bin/false
sshd:x:101:65534::/var/run/sshd:/bin/false gdm:x:102:101:Gnome Display
Manager:/var/lib/gdm:/bin/false
telnetd:x:103:103::/usr/lib/telnetd:/bin/false

dummy :x:1001:1001:,,, : /home/dummy: /bin/bash

letc/passwd—
Old /etc/passwd file.
/etc/printcap
Printer configuration (capabilities) file. The definition of all system printers, whether local or remote,
is stored in this file. Its layout is similar to that of /etc/termcap but it uses a different syntax.
/etc/profile
Files and commands to be executed at login or startup time by the Bourne or C shells. These allow the
system administrator to set global defaults for all users.

letc/profile.d
Shells scripts to be executed upon login to the Bourne or C shells. These scripts are normally called
from the /etc/profile file.

/etc/protocols
Protocols definitions file. It describes the various DARPA Internet protocols that are available from
the TCP/IP subsystem. It should be consulted instead of using the numbers in the ARPA include files
or resorting to guesstimation. This file should be left untouched since changes could result in incorrect
IP packages.

/etc/pcmcia
Configuration files for PCMCIA devices. Generally only useful to laptop users.

/etc/reportbug.conf
Configuration file for reportbug. Reportbug is primarily designed to report bugs in the Debian
distribution. By default it creates an e—mail to the Debian bug tracking system at
mit@bugs.debian.org with information about the bug. Using the —bts option you can report bugs to
other servers also using ddebbugs such as KDE.org. It is similar to bug but has far greater capabilities
while still maintaining simplicity.

/etc/rc.boot or /etc/rc?.d
These directories contain all the files necessary to control system services and configure runlevels. A
skeleton file is provided in /etc/init.d/skeleton

letc/reS.d
The scripts in this directory are executed once when booting the system, even when booting directly
into single user mode. The files are all symbolic links, the real files are located in /etc/init.d/. For a
more general discussion of this technique, see /etc/init.d/README.

/etc/resolv.conf
Configuration of how DNS is to occur is defined in this file. It tells the name resolver libraries where
they need to go to find information not found in the /etc/hosts file. This always has at least one
nameserver line, but preferably three. The resolver uses each in turn. More than the first three can be
included but anything beyond the first three will be ignored. Two lines that appear in the
/etc/resolv.conf file are domain and search. Both of these are mutually exclusive options, and where
both show up, the last one wins. Other entries beyond the three discussed here are listed in the man
pages but aren't often used.

/etc/rmt
This is not a mistake. This shell script (/etc/rmt) has been provided for compatibility with other
Unix-like systems, some of which have utilities that expect to find (and execute) rmt in the /etc
directory on remote systems.

letc/rpc
The rpc file contains user readable names that can be used in place of rpc program numbers. Each line
has the following information: —name of server for the rpc program —rpc program number —aliases
Items are separated by any number of blanks and/or tab characters. A “*#" indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file.

/etc/rpc:
$Id: etc.xml,v 1.10 2004/02/03 21:42:57 binh Exp $
#

rpc 88/08/01 4.0 RPCSRC; from 1.12 88/02/07 SMI

portmapper 100000 portmap sunrpc

rstatd 100001 «zrstat rstat_svc rup perfmeter
rusersd 100002 «rusers

nfs 100003 nfsprog

ypserv 100004 ypprog

mountd 100005 mount showmount

ypbind 100007

walld 100008 rwall shutdown

yppasswdd 100009 yppasswd

etherstatd 100010 etherstat

rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray

3270_mapper 100013

rje_mapper 100014

selection_svc 100015 selnsvc
database_svc 100016

rexd 100017 rex

alis 100018

sched 100019

llockmgr 100020

nlockmgr 100021

x25.1inr 100022

statmon 100023

status 100024

bootparam 100026

ypupdated 100028 ypupdate

keyserv 100029 keyserver

tfsd 100037

nsed 100038

nsemntd 100039

pcnfsd 150001

amd 300019 amg

sgi_fam 391002

ugidd 545580417

bwnfsd 788585389
/etc/samba

Samba configuration files. A 'LanManager' like file and printer server for Unix. The Samba software
suite is a collection of programs that implements the SMB protocol for unix systems, allowing you to
serve files and printers to Windows, NT, OS/2 and DOS clients. This protocol is sometimes also
referred to as the LanManager or NetBIOS protocol.

/etc/sane.d
Sane configuration files. SANE stands for "Scanner Access Now Easy" and is an application
programming interface (API) that provides standardized access to any raster image scanner hardware
(flatbed scanner, hand—held scanner, video— and still-cameras, frame—grabbers, etc.). The SANE API
is public domain and its discussion and development is open to everybody. The current source code is
written for UNIX (including GNU/Linux) and is available under the GNU General Public License
(the SANE API is available to proprietary applications and backends as well, however).

SANE is a universal scanner interface. The value of such a universal interface is that it allows writing
just one driver per image acquisition device rather than one driver for each device and application. So,
if you have three applications and four devices, traditionally you'd have had to write 12 different
programs. With SANE, this number is reduced to seven: the three applications plus the four drivers.
Of course, the savings get even bigger as more and more drivers and/or applications are added.

Not only does SANE reduce development time and code duplication, it also raises the level at which
applications can work. As such, it will enable applications that were previously unheard of in the
UNIX world. While SANE is primarily targeted at a UNIX environment, the standard has been
carefully designed to make it possible to implement the API on virtually any hardware or operating
system.

While SANE is an acronym for ~*Scanner Access Now Easy" the hope is of course that SANE is
indeed sane in the sense that it will allow easy implementation of the API while accommodating all

features required by today's scanner hardware and applications. Specifically, SANE should be broad
enough to accommodate devices such as scanners, digital still and video cameras, as well as virtual
devices like image file filters.

If you're familiar with TWAIN, you may wonder why there is a need for SANE. Simply put, TWAIN
does not separate the user—interface from the driver of a device. This, unfortunately, makes it
difficult, if not impossible, to provide network transparent access to image acquisition devices (which
is useful if you have a LAN full of machines, but scanners connected to only one or two machines; it's
obviously also useful for remote—controlled cameras and such). It also means that any particular
TWAIN driver is pretty much married to a particular GUI API (be it Win32 or the Mac API). In
contrast, SANE cleanly separates device controls from their representation in a user—interface. As a
result, SANE has no difficulty supporting command-line driven interfaces or network—transparent
scanning. For these reasons, it is unlikely that there will ever be a SANE backend that can talk to a
TWAIN driver. The converse is no problem though: it would be pretty straight forward to access
SANE devices through a TWAIN source. In summary, if TWAIN had been just a little better
designed, there would have been no reason for SANE to exist, but things being the way they are,
TWAIN simply isn't SANE.

letc/securetty
Identifies secure terminals, i.e., the terminals from which root is allowed to log in. Typically only the
virtual consoles are listed, so that it becomes impossible (or at least harder) to gain superuser
privileges by breaking into a system over a modem or a network.

/etc/securetty: list of terminals on which root is allowed to login.
See securetty(5) and login (1) .
console

Standard consoles
ttyl
tty2
tty3
tty4
tty5
tty6
tty7
tty8
tty9
ttyl0
ttyll
ttyl2

Same as above, but these only occur with devfs devices
ve/l
ve/2
ve/3
ve/4
ve/5
vc/6
ve/7
vec/8
ve/9
ve/10
ve/11
ve/12

/etc/sensors.conf

Configuration file for libsensors. A set of libraries designed to ascertain current hardware states via
motherboard sensor chips. Useful statistics such as core voltages, CPU temperature can be determined
through third party utilities that make user of these libraries such as 'gkrellm'. If you do not wish to
install these packages you may also utilise the /proc filesystem real-time nature.

/etc/sudoers
Sudoers file. This file must be edited with the 'visudo' command as root. The sudo command allows
an authenticated user to execute an authorized command as root. Both the effective UID and GID are
set to 0 (you are basically root). It determines which users are authorized and which commands they
are authorized to use. Configuration of this command is via this file.

/etc/shadow
Shadow password file on systems with shadow password software installed (PAMs). Shadow
passwords move the encrypted password from /etc/passwd into /etc/shadow; the latter is not readable
by anyone except root. This makes it more difficult to crack passwords.

/etc/shadow—
Old /etc/shadow file.

letc/sysctl.conf
Configuration file for setting system variables, most notably kernel parameters. 'sysctl' is a means of
configuring certain aspects of the kernel at run—time, and the /proc/sys/ directory is there so that you
don't even need special tools to do it!

[etc/security
Essential to security. This subdirectory allows administrators to impose quota limits, access limits and
also to configure PAM environments.

/etc/serial.conf
Serial port configuration. Changeable parameters include speed, baud rate, port, irq and type.

/etc/services
A definition of the networks, services and the associated port for each protocol that are available on
this system. For example, web services (http) are assigned to port 80 by default. # /etc/services: # $1d:
etc.xml,v 1.10 2004/02/03 21:42:57 binh Exp $ # # Network services, Internet style # # Note that it is
presently the policy of IANA to assign a single # well-known port number for both TCP and UDP;
hence, most entries # here have two entries even if the protocol doesn't support UDP # operations.
Updated from RFC 1700, ~* Assigned Numbers" (October # 1994). Not all ports are included, only the
more common ones. echo 7/tcp echo 7/udp discard 9/tcp sink null discard 9/udp sink null systat 11/tcp
users daytime 13/tcp daytime 13/udp netstat 15/tcp qotd 17/tcp quote msp 18/tcp # message send
protocol msp 18/udp # message send protocol chargen 19/tcp ttytst source chargen 19/udp ttytst
source ftp—data 20/tcp ftp 21/tcp fsp 21/udp fspd ssh 22/tcp # SSH Remote Login Protocol ssh 22/udp
SSH Remote Login Protocol telnet 23/tcp # 24 — private smtp 25/tcp mail # 26 — unassigned time
37/tcp timserver time 37/udp timserver rlp 39/udp resource # resource location nameserver 42/tcp
name # IEN 116 whois 43/tcp nicname re—mail—ck 50/tcp # Remote Mail Checking Protocol
re—mail—ck 50/udp # Remote Mail Checking Protocol domain 53/tcp nameserver # name—domain
server domain 53/udp nameserver netbios—ns 137/tcp # NETBIOS Name Service netbios—ns 137/udp
netbios—dgm 138/tcp # NETBIOS Datagram Service netbios—dgm 138/udp netbios—ssn 139/tcp #
NETBIOS session service netbios—ssn 139/udp x11 6000/tcp x11-0 # X windows system x11
6000/udp x11-0 # X windows system

/etc/shells
Lists trusted shells. The chsh command allows users to change their login shell only to shells listed in
this file. ftpd, the server process that provides FTP services for a machine, will check that the user's
shell is listed in /etc/shells and will not let people log in unless the shell is listed there. There are also
some display managers that will passively or actively (dependent upon on distribution and display
manager being used) refuse a user access to the system unless their shell is one of those listed here.

/etc/shells: valid login shells
/bin/ash
/bin/bash
/bin/csh
/bin/sh
/usr/bin/es
/usr/bin/ksh
/bin/ksh
/usr/bin/rc
/usr/bin/tcsh
/bin/tcsh
/usr/bin/zsh
/bin/sash
/bin/zsh
/usr/bin/esh

letc/skel/
The default files for each new user are stored in this directory. Each time a new user is added, these
skeleton files are copied into their home directory. An average system would have: .alias,
.bash_profile, .bashrc and .cshrc files. Other files are left up to the system administrator.

/etc/sysconfig/
This directory contains configuration files and subdirectories for the setup of system configuration
specifics and for the boot process, like 'clock’', which sets the timezone, or 'keyboard' which controls
the keyboard map. The contents may vary drastically depending on which distribution and what
utilities you have installed. For example, on a Redhat or Mandrake based system it is possible to alter
an endless array of attributes from the default desktop to whether DMA should be enabled for your
IDE devices. On our Debian reference system though this folder is almost expedient containing only
two files hwconf and soundcard which are both configured by the Redhat utilities hwconf and
sndconfig respectively.

letc/slip
Configuration files for the setup and operation of SLIP (serial line IP) interface. Generally unused
nowadays. This protocol has been superceded by the faster and more efficient PPP protocol.

/etc/screenrc
This is the system wide screenrc. You can use this file to change the default behavior of screen system
wide or copy it to ~/.screenrc and use it as a starting point for your own settings. Commands in this
file are used to set options, bind screen functions to keys, redefine terminal capabilities, and to
automatically establish one or more windows at the beginning of your screen session. This is not a
comprehensive list of options, look at the screen manual for details on everything that you can put in
this file.

/etc/scrollkeeper.conf
A free electronic cataloging system for documentation. It stores metadata specified by the
http://www.ibiblio.org/osrt/omf/ (Open Source Metadata Framework) as well as certain metadata
extracted directly from documents (such as the table of contents). It provides various functionality
pertaining to this metadata to help browsers, such as sorting the registered documents or searching the
metadata for documents which satisfy a set of criteria.

letc/ssh
'ssh' configuration files. 'ssh' is a secure rlogin/rsh/rcp replacement (OpenSSH). This is the portable
version of OpenSSH, a free implementation of the Secure Shell protocol as specified by the IETF
secsh working group. 'ssh' (Secure Shell) is a program for logging into a remote machine and for
executing commands on a remote machine. It provides secure encrypted communications between
two untrusted hosts over an insecure network. X11 connections and arbitrary TCP/IP ports can also be
forwarded over the secure channel. It is intended as a replacement for rlogin, rsh and rcp, and can be
used to provide applications with a secure communication channel. It should be noted that in some

countries, particularly Iraq, and Pakistan, it may be illegal to use any encryption at all without a
special permit.

letc/syslog.conf
Lists where log files should go, what messages are written to them and the level of verbosity. It is also
now possible to filter based on message content, message integrity, message encryption (near future),
portability and better network forwarding.

/etc/termcap
The terminal capability database. Describes the "escape sequences" by which various terminals can be
controlled. Programs are written so that instead of directly outputting an escape sequence that only
works on a particular brand of terminal, they look up the correct sequence to do whatever it is they
want to do in /etc/termcap. As a result most programs work with most kinds of terminals.

/etc/timezone
local timezone.

/etc/updatedb.conf
Sets environment variables that are used by updatedb which therefore configures the database for
'locate’, a utility that locates a pattern in a database of filenames and returns the filenames that match.

This file sets environment variables which are used by updatedb

filesystems which are pruned from updatedb database

PRUNEFS="NFS nfs afs proc smbfs autofs auto 1509660 ncpfs coda devpts ftpfs"
export PRUNEFS

paths which are pruned from updatedb database

PRUNEPATHS="/tmp /usr/tmp /var/tmp /afs /amd /alex /var/spool"

export PRUNEPATHS

netpaths which are added

NETPATHS=""

export NETPATHS

letc/vga
The configuration file for the svgalib is stored in this directory. svgalib provides graphics capabilities
to programs running on the system console, without going through the X Window System. It uses
direct access to the video hardware to provide low—level access to the standard VGA and SVGA
graphics modes. It only works with some video hardware; so use with caution.

/etc/vim
Contains configuration files for both vim and its X based counterpart gvim. A wide range of options
can be accessed though these two files such as automatic indentation, syntax highlighting, etc....

/etc/xinetd.d/
The original 'inetd' daemon has now been superceded by the much improved 'xinetd'. 'inetd' should be
run at boot time by /etc/init.d/inetd (or /etc/rc.local on some systems). It then listens for connections
on certain Internet sockets. When a connection is found on one of its sockets, it decides what service
the socket corresponds to, and invokes a program to service the request. After the program is finished,
it continues to listen on the socket (except in some cases). Essentially, inetd allows running one
daemon to invoke several others, reducing load on the system. Services controlled via xinetd put their
configuration files here.

/etc/zlogin
System—wide .zlogin file for zsh(1). This file is sourced only for login shells. It should contain
commands that should be executed only in login shells. It should be used to set the terminal type and
run a series of external commands (fortune, msgs, from, etc.)

letc/zlogout
Commands to be executed upon user exit from the zsh. Its control is system—wide but the .zlogout file
for zsh(1) does override it in terms of importance.

letc/zprofile

System—wide .zprofile file for zsh(1). This file is sourced only for login shells (i.e. Shells invoked
with "-" as the first character of argv[0], and shells invoked with the —I flag.)

/etc/zshenv
System—wide .zshenv file for zsh(1). This file is sourced on all invocations of the shell. If the —f flag
is present or if the NO_RCS option is set within this file, all other initialization files are skipped. This
file should contain commands to set the command search path, plus other important environment
variables. This file should not contain commands that produce output or assume the shell is attached
to a tty.

letc/zshre
System—wide .zshrc file for zsh(1). This file is sourced only for interactive shells. It should contain
commands to set up aliases, functions, options, key bindings, etc.

Compliance with the FSSTND requires that the following directories, or symbolic links to directories are
required in /etc:

opt Configuration for /opt

X11 Configuration for the X Window system (optional)
sgml Configuration for SGML (optional)

xml Configuration for XML (optional)

The following directories, or symbolic links to directories must be in /etc,
if the corresponding subsystem is installed:

opt Configuration for /opt
The following files, or symbolic links to files, must be in /etc if the

corresponding subsystem is installed (it is recommended that files be
stored in subdirectories of /etc/ rather than directly in /etc:

csh.login Systemwide initialization file for C shell logins (optional)
exports NFS filesystem access control list (optional)

fstab Static information about filesystems (optional)

ftpusers FTP daemon user access control list (optional)

gateways File which lists gateways for routed (optional)

gettydefs Speed and terminal settings used by getty (optional)

group User group file (optional)

host.conf Resolver configuration file (optional)

hosts Static information about host names (optional)

hosts.allow Host access file for TCP wrappers (optional)
hosts.deny Host access file for TCP wrappers (optional)
hosts.equiv List of trusted hosts for rlogin, rsh, rcp (optional)
hosts.lpd List of trusted hosts for lpd (optional)

inetd.conf Configuration file for inetd (optional)

inittab Configuration file for init (optional)

issue Pre-login message and identification file (optional)

ld.so.conf List of extra directories to search for shared libraries
(optional)

motd Post-login message of the day file (optional)

mtab Dynamic information about filesystems (optional)

mtools.conf Configuration file for mtools (optional)

networks Static information about network names (optional)

passwd The password file (optional)

printcap The lpd printer capability database (optional)

profile Systemwide initialization file for sh shell logins (optional)

protocols IP protocol listing (optional)

resolv.conf Resolver configuration file (optional)

rpc RPC protocol listing (optional)

securetty TTY access control for root login (optional)
services Port names for network services (optional)

shells Pathnames of valid login shells (optional)
syslog.conf Configuration file for syslogd (optional)

mtab does not fit the static nature of /etc: it is excepted for historical
reasons. On some Linux systems, this may be a symbolic link to /proc/mounts,
in which case this exception is not required.

/etc/opt : Configuration files for /opt

Host-specific configuration files for add-on application software packages
must be installed within the directory /etc/opt/&60;subdir&62;, where

&60; subdir&62; is the name of the subtree in /opt where the static data
from that package is stored.

No structure is imposed on the internal arrangement of /etc/opt/&60;subdir&62; .
If a configuration file must reside in a different location in order for the
package or system to function properly, it may be placed in a location other
than /etc/opt/&60; subdir&62; .

The rationale behind this subtree is best explained by refering to the
rationale for /opt.

/etc/X11l : Configuration for the X Window System (optional)
/etc/X11l is the location for all X11 host-specific configuration. This
directory is necessary to allow local control if /usr is mounted read only.

The following files, or symbolic links to files, must be in /etc/X11l if the
corresponding subsystem is installed:

Xconfig The configuration file for early versions of XFree86 (optional)
XF86Config The configuration file for XFree86 versions 3 and 4 (optional)
Xmodmap Global X11 keyboard modification file (optional)

Subdirectories of /etc/X1l may include those for xdm and for any other
programs (some window managers, for example) that need them.

/etc/X11l/xdm holds the configuration files for xdm. These are most of the
files previously found in /usr/1lib/X11l/xdm. Some local variable data for
xdm is stored in /var/lib/xdm.

It is recommended that window managers with only one configuration file
which is a default .*wmrc file must name it system.*wmrc (unless there is
a widely—-accepted alternative name) and not use a subdirectory. Any window
manager subdirectories must be identically named to the actual window
manager binary.

/etc/sgml : Configuration files for SGML (optional)

Generic configuration files defining high-level parameters of the SGML
systems are installed here. Files with names *.conf indicate generic
configuration files. File with names *.cat are the DTD-specific centralized
catalogs, containing references to all other catalogs needed to use the
given DTD. The super catalog file catalog references all the centralized
catalogs.

/etc/xml : Configuration files for XML (optional)

Generic configuration files defining high-level parameters of the XML
systems are installed here. Files with names *.conf indicate generic
configuration files. The super catalog file catalog references all the
centralized catalogs.

1.7. /home

Linux is a multi—user environment so each user is also assigned a specific directory that is accessible only to
them and the system administrator. These are the user home directories, which can be found under
'’home/$USER' (~/). It is your playground: everything is at your command, you can write files, delete them,
install programs, etc.... Your home directory contains your personal configuration files, the so—called dot files
(their name is preceded by a dot). Personal configuration files are usually 'hidden', if you want to see them,
you either have to turn on the appropriate option in your file manager or run Is with the —a switch. If there is a
conflict between personal and system wide configuration files, the settings in the personal file will prevail.

Dotfiles most likely to be altered by the end user are probably your .xsession and .bashrc files. The
configuration files for X and Bash respectively. They allow you to be able to change the window manager to
be startup upon login and also aliases, user—specified commands and environment variables respectively.
Almost always when a user is created their dotfiles will be taken from the /etc/skel directory where system
administrators place a sample file that user's can modify to their hearts content.

/home can get quite large and can be used for storing downloads, compiling, installing and running programs,
your mail, your collection of image or sound files etc.

The FSSTND states that:

/home is a fairly standard concept, but it is clearly a site-specific
filesystem.

Different people prefer to place user accounts in a variety of places.
This section describes only a suggested placement for user home
directories; nevertheless we recommend that all FHS-compliant
distributions use this as the default location for home directories.
On small systems, each user's directory is typically one of the many
subdirectories of /home such as /home/smith, /home/torvalds,
/home/operator, etc. On large systems (especially when the /home
directories are shared amongst many hosts using NFS) it is useful

to subdivide user home directories. Subdivision may be accomplished by
using subdirectories such as /home/staff, /home/guests, /home/students,
EtCo

The setup will differ from host to host. Therefore, no program
should rely on this location.

If you want to find out a user's home directory, you should use the
getpwent (3) library function rather than relying on /etc/passwd because
user information may be stored remotely using systems such as NIS.

User specific configuration files for applications are stored in the
user's home directory in a file that starts with the '.' character

(a "dot file"). If an application needs to create more than one dot
file then they should be placed in a subdirectory with a name starting
with a '.' character, (a "dot directory"). In this case the
configuration files should not start with the '.' character.

It is recommended that apart from autosave and lock files programs
should refrain from creating non dot files or directories in a home
directory without user intervention.

1.8. /initrd

initrd provides the capability to load a RAM disk by the boot
loader. This RAM disk can then be mounted as the root file
system and programs can be run from it. Afterwards, a new
root file system can be mounted from a different device. The
previous root (from initrd) is then moved to a directory and

can

be subsequently unmounted.

initrd is mainly designed to allow system startup to occur
in two phases, where the kernel comes up with a minimum set
of compiled-in drivers, and where additional modules are
loaded from initrd.

Operation

When using initrd, the system typically boots as follows:

1)
2)

3)
4)

the boot loader loads the kernel and the initial RAM disk
the kernel converts initrd into a "normal" RAM disk and
frees the memory used by initrd

initrd is mounted read-write as root

/linuxrc is executed (this can be any valid executable,

including shell scripts; it is run with uid 0 and can do
basically everything init can do)

5)
6)

7)

8)

linuxrc mounts the "real" root file system

linuxrc places the root file system at the root directory
using the pivot_root system call

the usual boot sequence (e.g. invocation of /sbin/init) is
performed on the root file system

the initrd file system is removed

Note that changing the root directory does not involve unmounting

it.

It is therefore possible to leave processes running on initrd

during that procedure. Also note that file systems mounted under
initrd continue to be accessible.

Usage scenarios

The
for
The

1)

2)

3)
4)

5)

6)
7)

main motivation for implementing initrd was to allow
modular kernel configuration at system installation.
procedure would work as follows:

system boots from floppy or other media with a minimal kernel
(e.g. support for RAM disks, initrd, a.out, and the Ext2 FS)
and loads initrd

/linuxrc determines what is needed to (1) mount the "real" root
FS (i.e. device type, device drivers, file system) and (2) the
distribution media (e.g. CD-ROM, network, tape, ...). This can
be done by asking the user, by auto-probing, or by using a
hybrid approach.

/linuxrc loads the necessary kernel modules

/linuxrc creates and populates the root file system (this
doesn't have to be a very usable system yet)

/linuxrc invokes pivot_root to change the root file system and
execs — via chroot - a program that continues the installation
the boot loader is installed

the boot loader is configured to load an initrd with the set of
modules that was used to bring up the system (e.g. /initrd can

be modified, then unmounted, and finally, the image is written
from /dev/ram0 or /dev/rd/0 to a file)

8) now the system is bootable and additional installation tasks
can be performed

The key role of initrd here is to re-use the configuration data
during normal system operation without requiring the use of a
bloated "generic" kernel or re-compiling or re-linking the kernel.

A second scenario is for installations where Linux runs on systems
with different hardware configurations in a single administrative
domain. In such cases, it is desirable to generate only a small set
of kernels (ideally only one) and to keep the system-specific part
of configuration information as small as possible. In this case, a
common initrd could be generated with all the necessary modules.
Then, only /linuxrc or a file read by it would have to be different.

A third scenario are more convenient recovery disks, because
information like the location of the root FS partition doesn't have
to be provided at boot time, but the system loaded from initrd can
invoke a user—-friendly dialog and it can also perform some sanity
checks (or even some form of auto-detection).

Last not least, CD-ROM distributors may use it for better installation
from CD, e.g. by using a boot floppy and bootstrapping a bigger RAM disk
via initrd from CD; or by booting via a loader like LOADLIN or directly
from the CD-ROM, and loading the RAM disk from CD without need of floppies.

1.9. /lib

The /lib directory contains kernel modules and those shared library images (the C programming code library)
needed to boot the system and run the commands in the root filesystem, ie. by binaries in /bin and /sbin.
Libraries are readily identifiable through their filename extension of *.so. Windows equivalent to a shared
library would be a DLL (dynamically linked library) file. They are essential for basic system functionality.
Kernel modules (drivers) are in the subdirectory /lib/modules/’kernel-version'. To ensure proper module
compilation you should ensure that /lib/modules/'kernel—version'/kernel/build points to
/ust/src/'’kernel—version' or ensure that the Makefile knows where the kernel source itself are located.

/lib/'machine—architecture’'
Contains platform/architecture dependent libraries.
/lib/iptables
iptables shared library files.
/lib/kbd
Contains various keymaps.
/lib/modules/'kernel—version'
The home of all the kernel modules. The organisation of files here is reasonably clear so no requires
no elaboration.
/lib/modules/'kernel—version'/isapnpmap.dep
has details on ISA based cards, the modules that they require and various other attributes.
/lib/modules/'kernel—version'/modules.dep
lists all modules dependencies. This file can be updated using the depmod command.
/lib/modules/'kernel—version'/pcimap
is the PCI equivalent of the /lib/modules/'kernel-version'/isapnpmap.dep file.
/lib/modules/'kernel—version'/usbmap
is the USB equivalent of the /lib/modules/'kernel—version'/isapnpmap.dep file.

/lib/oss

All OSS (Open Sound System) files are installed here by default.
/lib/security

PAM library files.

The FSSTND states that the /lib directory contains those shared library
images needed to boot the system and run the commands in the root filesystem,
ie. by binaries in /bin and /sbin.

Shared libraries that are only necessary for binaries in /usr (such as any
X Window binaries) must not be in /lib. Only the shared libraries required
to run binaries in /bin and /sbin may be here. In particular, the library
libm.so.* may also be placed in /usr/lib if it is not required by anything
in /bin or /sbin.

At least one of each of the following filename patterns are required (they
may be files, or symbolic links):

libc.so.* The dynamically-linked C library (optional)
1d~* The execution time linker/loader (optional)

If a C preprocessor is installed, /lib/cpp must be a reference to it, for
historical reasons. The usual placement of this binary is /usr/bin/cpp.

The following directories, or symbolic links to directories, must be in
/1lib, if the corresponding subsystem is installed:

modules Loadable kernel modules (optional)
/lib<qual> : Alternate format essential shared libraries (optional)

There may be one or more variants of the /lib directory on systems which
support more than one binary format requiring separate libraries.

This is commonly used for 64-bit or 32-bit support on systems which support
multiple binary formats, but require libraries of the same name. In this
case, /1ib32 and /1ib64 might be the library directories, and /lib a symlink
to one of them.

If one or more of these directories exist, the requirements for their contents
are the same as the normal /lib directory, except that /lib<qual>/cpp is
not required.

/lib<qual>/cpp is still permitted: this allows the case where /lib and
/lib<qual> are the same (one is a symbolic link to the other).

1.10. /lost+found

As was explained earlier during the overview of the FSSTND, Linux should always go through a proper
shutdown. Sometimes your system might crash or a power failure might take the machine down. Either way,
at the next boot, a lengthy filesystem check (the speed of this check is dependent on the type of filesystem that
you actually use. ie. ext3 is faster than ext2 because it is a journalled filesystem) using fsck will be done. Fsck
will go through the system and try to recover any corrupt files that it finds. The result of this recovery
operation will be placed in this directory. The files recovered are not likely to be complete or make much
sense but there always is a chance that something worthwhile is recovered. Each partition has its own
lost+found directory. If you find files in there, try to move them back to their original location. If you find
something like a broken symbolic link to 'file', you have to reinstall the file/s from the corresponding RPM,

since your file system got damaged so badly that the files were mutilated beyond recognition. Below is an
example of a /lost+found directory. As you can see, the vast majority of files contained here are in actual fact
sockets. As for the rest of the other files they were found to be damaged system files and personal files. These
files were not able to be recovered.

total 368

-rw—-r——r—— 1 root root 110891 Oct 5 14:14 #388200
-rw-r—-—-r—— 1 root root 215 Oct 5 14:14 #388201
-rw—-r——-r—— 1 root root 110303 Oct 6 23:09 #388813
-rw-r—-—-r—— 1 root root 141 Oct 6 23:09 #388814
—-rw—-r——r—— 1 root root 110604 Oct 6 23:09 #388815a
-rw—-r——r—— 1 root root 194 Oct 6 23:09 #388816
Srwxr—xr-x 1 root root 0 Oct 6 13:00 #51430
srwxr—-xr—-x 1 root root 0 Oct 6 00:23 #51433
—rW——————— 1 root root 63 Oct 6 00:23 #51434
Srwxr—xr-x 1 root root 0 Oct 6 13:00 #51436

STWXrwxrwx 1 root root 0 Oct 6 00:23 #51437

STWX—————— 1 root root 0 Oct 6 00:23 #51438
—rWw——————— 1 root root 63 Oct 6 13:00 #51439
SrWXrwxrwx 1 root root 0 Oct 6 13:00 #51440
SrWX—————— 1 root root 0 Oct 6 13:00 #51442
—rWw——————— 1 root root 63 Oct 6 23:09 #51443
STWX—————— 1 root root 0 Oct 6 10:40 #51445
SrWXrwxrwx 1 root root 0 Oct 6 23:09 #51446
SrWX—————— 1 root root 0 Oct 6 23:09 #51448

1.11. /media

Amid much controversy and consternation on the part of system and network administrators a directory
containing mount points for removable media has now been created. Funnily enough, it has been named
/media.

This directory contains subdirectories which are used as mount points for
removeable media such as floppy disks, cdroms and zip disks.

The motivation for the creation of this directory has been that historically
there have been a number of other different places used to mount removeable
media such as /cdrom, /mnt or /mnt/cdrom. Placing the mount points for all
removeable media directly in the root directory would potentially result in
a large number of extra directories in /. Although the use of subdirectories
in /mnt as a mount point has recently been common, it conflicts with a much
older tradition of using /mnt directly as a temporary mount point.

The following directories, or symbolic links to directories, must be in /media,
if the corresponding subsystem is installed:

floppy Floppy drive (optional)
cdrom CD-ROM drive (optional)
cdrecorder CD writer (optional)
zip Zip drive (optional)

On systems where more than one device exists for mounting a certain type of
media, mount directories can be created by appending a digit to the name of
those available above starting with '0', but the unqualified name must also
exist.

A compliant implementation with two CDROM drives might have /media/cdromO

and /media/cdroml with /media/cdrom a symlink to either of these.
Please see the section on the /mnt directory to achieve a better understanding of the process on mounting and
unmounting filesystems.

1.12. /mnt

This is a generic mount point under which you mount your filesystems or devices. Mounting is the process by
which you make a filesystem available to the system. After mounting your files will be accessible under the
mount—point. This directory usually contains mount points or sub—directories where you mount your floppy
and your CD. You can also create additional mount—points here if you wish. Standard mount points would
include /mnt/cdrom and /mnt/floppy. There is no limitation to creating a mount—point anywhere on your
system but by convention and for sheer practicality do not litter your file system with mount—points. It should
be noted that some distributions like Debian allocate /floppy and /cdrom as mount points while Redhat and
Mandrake puts them in /mnt/floppy and /mnt/cdrom respectively.

However, it should be noted that as of FSSTND version 2.3 the purpose of this directory has changed.

This directory is provided so that the system administrator may temporarily
mount a filesystem as needed. The content of this directory is a local issue
and should not affect the manner in which any program is run.

This directory must not be used by installation programs: a suitable temporary
directory not in use by the system must be used instead.

1.12.1. Mounting and unmounting

Before one can use a filesystem, it has to be mounted. The operating system then does various bookkeeping
things to make sure that everything works. Since all files in UNIX are in a single directory tree, the mount
operation will make it look like the contents of the new filesystem are the contents of an existing subdirectory
in some already mounted filesystem.

The mounts could be done as in the following example:

S mount /dev/hda2 /home
S mount /dev/hda3 /usr
$

The mount command takes two arguments. The first one is the device file corresponding to the disk or
partition containing the filesystem. The second one is the directory below which it will be mounted. After
these commands the contents of the two filesystems look just like the contents of the /home and /usr
directories, respectively. One would then say that " /dev/hda2 is mounted on /home", and similarly for
/usr. To look at either filesystem, one would look at the contents of the directory on which it has been
mounted, just as if it were any other directory. Note the difference between the device file, /dev/hdaZ2, and
the mounted—on directory, /home. The device file gives access to the raw contents of the disk, the
mounted—on directory gives access to the files on the disk. The mounted—on directory is called the mount
point.

Linux supports many filesystem types. mount tries to guess the type of the filesystem. You can also use the
-t fstype option to specify the type directly; this is sometimes necessary, since the heuristics mount uses
do not always work. For example, to mount an MS—DOS floppy, you could use the following command:

$ mount -t msdos /dev/£d0 /floppy
$

The mounted—on directory need not be empty, although it must exist. Any files in it, however, will be
inaccessible by name while the filesystem is mounted. (Any files that have already been opened will still be
accessible. Files that have hard links from other directories can be accessed using those names.) There is no
harm done with this, and it can even be useful. For instance, some people like to have /tmp and /var/tmp
synonymous, and make /tmp be a symbolic link to /var/tmp. When the system is booted, before the /var
filesystem is mounted, a /var/tmp directory residing on the root filesystem is used instead. When /var is
mounted, it will make the /var/tmp directory on the root filesystem inaccessible. If /var/tmp didn't exist
on the root filesystem, it would be impossible to use temporary files before mounting /var.

If you don't intend to write anything to the filesystem, use the —r switch for mount to do a read—only mount.
This will make the kernel stop any attempts at writing to the filesystem, and will also stop the kernel from
updating file access times in the inodes. Read—only mounts are necessary for unwritable media, e.g.,
CD-ROMs.

The alert reader has already noticed a slight logistical problem. How is the first filesystem (called the root
filesystem, because it contains the root directory) mounted, since it obviously can't be mounted on another
filesystem? Well, the answer is that it is done by magic.

For more information, see the kernel source or the Kernel Hackers' Guide.

The root filesystem is magically mounted at boot time, and one can rely on it to always be mounted. If the
root filesystem can't be mounted, the system does not boot. The name of the filesystem that is magically
mounted as root is either compiled into the kernel, or set using LILO or rdev.

The root filesystem is usually first mounted read—only. The startup scripts will then run fsck to verify its
validity, and if there are no problems, they will re—mount it so that writes will also be allowed. fsck must not
be run on a mounted filesystem, since any changes to the filesystem while fsck is running will cause trouble.
Since the root filesystem is mounted read—only while it is being checked, fsck can fix any problems without
worry, since the remount operation will flush any metadata that the filesystem keeps in memory.

On many systems there are other filesystems that should also be mounted automatically at boot time. These
are specified in the /et c/fstab file; see the fstab man page for details on the format. The details of exactly
when the extra filesystems are mounted depend on many factors, and can be configured by each administrator
if need be.

When a filesystem no longer needs to be mounted, it can be unmounted with umount.

It should of course be unmount, but the n mysteriously disappeared in the 70s, and hasn't been seen since.
Please return it to Bell Labs, NJ, if you find it.

umount takes one argument: either the device file or the mount point. For example, to unmount the
directories of the previous example, one could use the commands

S umount /dev/hda2
S umount /usr

$

See the man page for further instructions on how to use the command. It is imperative that you always
unmount a mounted floppy. Don't just pop the floppy out of the drive! Because of disk caching, the data is not

Linux Filesystem Hierarchy

necessarily written to the floppy until you unmount it, so removing the floppy from the drive too early might
cause the contents to become garbled. If you only read from the floppy, this is not very likely, but if you write,
even accidentally, the result may be catastrophic.

Mounting and unmounting requires super user privileges, i.e., only root can do it. The reason for this is that if
any user can mount a floppy on any directory, then it is rather easy to create a floppy with, say, a Trojan horse
disguised as /bin/sh, or any other often used program. However, it is often necessary to allow users to use
floppies, and there are several ways to do this:

e Give the users the root password. This is obviously bad security, but is the easiest solution. It works
well if there is no need for security anyway, which is the case on many non—networked, personal
systems.

e Use a program such as sudo to allow users to use mount. This is still bad security, but doesn't directly
give super user privileges to everyone. [1]

® Make the users use mtools, a package for manipulating MS—DOS filesystems, without mounting
them. This works well if MS—DOS floppies are all that is needed, but is rather awkward otherwise.

e List the floppy devices and their allowable mount points together with the suitable options in
/etc/fstab.

The last alternative can be implemented by adding a line like the following to the /etc/fstab file:

/dev/£d0 /floppy
msdos user,noauto 0 0

The columns are: device file to mount, directory to mount on, filesystem type, options, backup frequency
(used by dump), and fsck pass number (to specify the order in which filesystems should be checked upon
boot; 0 means no check).

The noaut o option stops this mount to be done automatically when the system is started (i.e., it stops mount
—a from mounting it). The user option allows any user to mount the filesystem, and, because of security
reasons, disallows execution of programs (normal or setuid) and interpretation of device files from the
mounted filesystem. After this, any user can mount a floppy with an msdos filesystem with the following
command:

$ mount /floppy
$

The floppy can (and needs to, of course) be unmounted with the corresponding umount command.

If you want to provide access to several types of floppies, you need to give several mount points. The settings
can be different for each mount point. For example, to give access to both MS—DOS and ext2 floppies, you
could have the following to lines in /etc/fstab:

/dev/fd0 /dosfloppy msdos user,noauto 0 0 /dev/£fd0
/ext2floppy ext2 user,noauto 0 0

For MS-DOS filesystems (not just floppies), you probably want to restrict access to it by using the uid, gid,
and umask filesystem options, described in detail on the mount manual page. If you aren't careful, mounting
an MS-DOS filesystem gives everyone at least read access to the files in it, which is not a good idea.

1.13. /opt

This directory is reserved for all the software and add—on packages that are not part of the default installation.
For example, StarOffice, Kylix, Netscape Communicator and WordPerfect packages are normally found here.
To comply with the FSSTND, all third party applications should be installed in this directory. Any package to
be installed here must locate its static files (ie. extra fonts, clipart, database files) must locate its static files in
a separate /opt/'package’ or /opt/'provider’ directory tree (similar to the way in which Windows will install new
software to its own directory tree C:\Windows\Progam Files\"Program Name"), where 'package' is a name that
describes the software package and 'provider’ is the provider's LANANA registered name.

Although most distributions neglect to create the directories /opt/bin, /opt/doc, /opt/include, /opt/info, /opt/lib,
and /opt/man they are reserved for local system administrator use. Packages may provide "front—end" files
intended to be placed in (by linking or copying) these reserved directories by the system administrator, but
must function normally in the absence of these reserved directories. Programs to be invoked by users are
located in the directory /opt/'package'/bin. If the package includes UNIX manual pages, they are located in
/opt/'package'/man and the same substructure as /usr/share/man must be used. Package files that are variable
must be installed in /var/opt. Host—specific configuration files are installed in /etc/opt.

Under no circumstances are other package files to exist outside the /opt, /var/opt, and /etc/opt hierarchies
except for those package files that must reside in specific locations within the filesystem tree in order to
function properly. For example, device lock files in /var/lock and devices in /dev. Distributions may install
software in /opt, but must not modify or delete software installed by the local system administrator without
the assent of the local system administrator.

The use of /opt for add—on software is a well—established practice in the UNIX community. The System V
Application Binary Interface [AT&T 1990], based on the System V Interface Definition (Third Edition) and
the Intel Binary Compatibility Standard v. 2 (iBCS2) provides for an /opt structure very similar to the one
defined here.

Generally, all data required to support a package on a system must be present within /opt/'package’, including
files intended to be copied into /etc/opt/package' and /var/opt/'package’ as well as reserved directories in /opt.
The minor restrictions on distributions using /opt are necessary because conflicts are possible between
distribution installed and locally installed software, especially in the case of fixed pathnames found in some
binary software.

The structure of the directories below /opt/'provider’ is left up to the packager of the software, though it is
recommended that packages are installed in /opt/'provider'/'package’ and follow a similar structure to the
guidelines for /opt/package. A valid reason for diverging from this structure is for support packages which
may have files installed in /opt/ 'provider'/lib or /opt/‘provider'/bin.

1.15. /root

This is the home directory of the System Administrator, 'root'. This may be somewhat confusing (‘root on
root') but in former days, /' was root's home directory (hence the name of the Administrator account). To keep
things tidier, root' got his own home directory. Why not in '/home'? Because '/home' is often located on a
different partition or even on another system and would thus be inaccessible to 'root' when — for some reason
—only /' is mounted.

The FSSTND merely states that this is the recommended location for the home directory of 'root'. It is left up
to the end user to determine the home directory of 'root'. However, the FSSTND also says that:

If the home directory of the root account is not stored on the root
partition it will be necessary to make certain it will default to
/ if it can not be located.

We recommend against using the root account for tasks that can be
performed as an unprivileged user, and that it be used solely for

system administration. For this reason, we recommend that subdirectories
for mail and other applications not appear in the root account's home
directory, and that mail for administration roles such as root, postmaster,
and webmaster be forwarded to an appropriate user.

Chapter 1. Linux Filesystem Hierarchy

1.16. /sbin

Linux discriminates between normal' executables and those used for system maintenance and/or
administrative tasks. The latter reside either here or — the less important ones — in /usr/sbin. Locally installed
system administration programs should be placed into /usr/local/sbin.

Programs executed after /usr is known to be mounted (when there are no problems) are generally placed into
/usr/sbin. This directory contains binaries that are essential to the working of the system. These include
system administration as well as maintenance and hardware configuration programs. You may find lilo, fdisk,
init, ifconfig, etc.... here.

Another directory that contains system binaries is /ust/sbin. This directory contains other binaries of use to the
system administrator. This is where you will find the network daemons for your system along with other
binaries that (generally) only the system administrator has access to, but which are not required for system
maintenance and repair. Normally, these directories are never part of normal user's SPATHs, only of roots
(PATH is an environment variable that controls the sequence of locations that the system will attempt to look
in for commands).

The FSSTND states that:

/sbin should contain only binaries essential for booting, restoring,
recovering, and/or repairing the system in addition to the binaries
in /bin.

A particular eccentricity of the Linux filesystem hierarchy is that originally /sbin binaries were kept in /etc.

Deciding what things go into "sbin" directories is simple: if a normal
(not a system administrator) user will ever run it directly, then it
must be placed in one of the "bin" directories. Ordinary users should
not have to place any of the sbin directories in their path.

For example, files such as chfn which users only occasionally use must
still be placed in /usr/bin. ping, although it is absolutely necessary
for root (network recovery and diagnosis) is often used by users and
must live in /bin for that reason.

We recommend that users have read and execute permission for everything
in /sbin except, perhaps, certain setuid and setgid programs. The
division between /bin and /sbin was not created for security reasons or
to prevent users from seeing the operating system, but to provide a
good partition between binaries that everyone uses and ones that are
primarily used for administration tasks. There is no inherent security
advantage in making /sbin off-limits for users.

FSSTND compliance requires that the following commands, or symbolic links to commands, are required in
/sbin.

shutdown Command to bring the system down.
The following files, or symbolic links to files, must be in /sbin if the corresponding subsystem is installed:

fastboot Reboot the system without checking the disks (optional)
fasthalt Stop the system without checking the disks (optional)
fdisk Partition table manipulator (optional)

fsck File system check and repair utility (optional)

fsck.* File system check and repair utility for a specific filesystem (optional)

getty The getty program (optional)

halt Command to stop the system (optional)

ifconfig Configure a network interface (optional)

init Initial process (optional)

mkfs Command to build a filesystem (optional)

mkfs.* Command to build a specific filesystem (optional)
mkswap Command to set up a swap area (optional)

reboot Command to reboot the system (optional)

route IP routing table utility (optional)

swapon Enable paging and swapping (optional)

swapoff Disable paging and swapping (optional)

update Daemon to periodically flush filesystem buffers (optional)

1.17. /usr

/usr usually contains by far the largest share of data on a system. Hence, this is one of the most important
directories in the system as it contains all the user binaries, their documentation, libraries, header files, etc....
X and its supporting libraries can be found here. User programs like telnet, ftp, etc.... are also placed here. In
the original Unix implementations, /usr was where the home directories of the users were placed (that is to
say, /usr/someone was then the directory now known as /home/someone). In current Unices, /usr is where
user—land programs and data (as opposed to 'system land' programs and data) are. The name hasn't changed,
but it's meaning has narrowed and lengthened from "everything user related" to "user usable programs and
data". As such, some people may now refer to this directory as meaning 'User System Resources' and not
'user' as was originally intended.

/usr is shareable, read-only data. That means that /usr should
be shareable between various FHS-compliant hosts and must not be written to.
Any information that is host-specific or varies with time is stored elsewhere.

Large software packages must not use a direct subdirectory under the /usr
hierarchy.

/ust/X11R6
Another large subdirectory structure begins here, containing libraries, executables, docs, fonts
and much more concerning the X Window System. Its inclusion here is somewhat
inconsistent and so is the difference between '/usr' and '/usr/X11R6' directories. One would
assume that programs that run on X only have their files in the '/usr/X11R6" hierarchy, while
the others use '/usr'. Regrettably, it isn't so. KDE and GNOME put their files in the '/usr'
hierarchy, whereas the window manager Window Maker uses '/ust/X11R6'. Documentation
files for X11R6 are not in '/usr/X11R6/doc’, but primarily in 'Just/X11R6/lib/X11/doc'". This
mess is due to the fact that in contrast to other operating systems, the graphical desktop isn't
an integral part of the system. Linux is still primarily used on servers, where graphical
systems don't make sense.
This hierarchy is reserved for the X Window System, version 11 release 6, and related files.
To simplify matters and make XFree86 more compatible with the X Window System on other
systems, the following symbolic links must be present if /usr/X11R6 exists:

/usr/bin/X11 -> /usr/X11R6/bin

/usr/1lib/X11 -> /usr/xX11R6/1ib/X11

/usr/include/X11 -> /usr/X11R6/include/X11
In general, software must not be installed or managed via the above symbolic links. They are
intended for utilization by users only. The difficulty is related to the release version of the X

Window System — in transitional periods, it is impossible to know what release of X11 is in
use.
/ust/X11R6/bin
XFree86 system binaries. These are necessary for the initialisation, configuration and running of the
X windowing system. X, xf86config, xauth, xmodmap and even xpenguin are located here.
/ust/X11R6/include
XFree86 system header files. There are required for the compilation of some applications that utilise
the X toolkit.
/usr/X11R6/lib
XFree86 system libraries.
/ust/X11R6/lib/modules
XFree86 system modules. These are the modules that X loads upon startup. Without these modules
video4linux, DRI and GLX extensions and drivers for certain input devices would cease to function.
/ust/X11R6/1ib/X11/fonts
XFree86 system fonts. Fonts that are utilised by 'xfs' (the X Font Server) and programs of that ilk.
/ust/bin
This directory contains the vast majority of binaries on your system. Executables in this directory vary
widely. For instance vi, gcc, gnome—session and mozilla and are all found here.
/usr/doc
The central documentation directory. Documentation is actually located in /ust/share/doc and linked
from here.
/usr/etc
Theoretically, that's another directory for configuration files. Virtually unused now.
/usr/games
Once upon a time, this directory contained network games files. Rarely used now.
/ust/include
The directory for 'header files', needed for compiling user space source code.
/usr/include/'package—name’'
Application specific header files.
/ust/info
This directory used to contain the files for the info documentation system. Now they are in
'fusr/share/info'.
/ust/lib
This directory contains program libraries. Libraries are collections of frequently used program
routines.
/ust/local
The original idea behind '/usr/local’ was to have a separate ('local’) '/usr’ directory on every machine
besides '/usr’, which might be just mounted read—only from somewhere else. It copies the structure of
'fust'. These days, '/usr/local' is widely regarded as a good place in which to keep self—compiled or
third—party programs. The /usr/local hierarchy is for use by the system administrator when installing
software locally. It needs to be safe from being overwritten when the system software is updated. It
may be used for programs and data that are shareable amongst a group of hosts, but not found in /usr.
Locally installed software must be placed within /usr/local rather than /usr unless it is being installed
to replace or upgrade software in /usr.
/usr/man
It once held the man pages. It has been moved to /usr/share/man.
/ust/sbin
This directory contains programs for administering a system, meant to be run by 'root'. Like '/sbin', it's
not part of a user's SPATH. Examples of included binaries here are chroot, useradd, in.tftpd and

pppconfig.
/usr/share

This directory contains 'shareable’, architecture—independent files (docs, icons, fonts etc). Note,
however, that '/usr/share' is generally not intended to be shared by different operating systems or by
different releases of the same operating system. Any program or package which contains or requires
data that doesn't need to be modified should store that data in '/usr/share' (or '/usr/local/share’, if
installed locally). It is recommended that a subdirectory be used in /usr/share for this purpose."
/usr/share/doc
Location of package specific documentation files. These directories often contain useful information
that might not be in the man pages. They may also contain templates and configuration files for
certain utilities making configuration that much easier.
/ust/share/info
Location of 'info’ pages. This style of documentation seems to be largely ignored now. Manual pages
are in far greater favour.
/usr/share/man
Manual pages. They are organised into 8 sections, which are explained below.

manl: User programs

Manual pages that describe publicly accessible commands are contained
in this chapter. Most program documentation that a user will need to
use 1s located here.

man2: System calls
This section describes all of the system calls (requests for the kernel
to perform operations).

man3: Library functions and subroutines

Section 3 describes program library routines that are not direct calls
to kernel services. This and chapter 2 are only really of interest to
programmers.

man4: Special files

Section 4 describes the special files, related driver functions, and

networking support available in the system. Typically, this includes

the device files found in /dev and the kernel interface to networking
protocol support.

man5: File formats
The formats for many data files are documented in the section 5. This
includes various include files, program output files, and system files.

man6: Games
This chapter documents games, demos, and generally trivial programs.
Different people have various notions about how essential this is.

man7: Miscellaneous Manual pages that are difficult to classify are
designated as being section 7. The troff and other text processing
macro packages are found here.

man8: System administration Programs used by system administrators
for system operation and maintenance are documented here. Some of
these programs are also occasionally useful for normal users.

/usr/src
The 'linux’ sub—directory holds the Linux kernel sources, header—files and documentation.
/usr/src/RPM
RPM provides a substructure for building RPMs from SRPMs. Organisation of this branch is fairly
logical with packages being organised according to a package's architecture.
/usr/src/RPM/BUILD
A temporary store for RPM binary files that are being built from source code.

fusr/src/RPM/RPMS/athlon, /usr/src/RPM/RPMS/i386, /usr/src/RPM/RPMS/i486, /usr/src/RPM/RPMS/i586,
fusr/src/RPM/RPMS/i686, /usr/src/RPM/RPMS/noarch
These directories contain architecture dependant RPM source files.
/ust/stc/RPM/SOURCES
This directory contains the source TAR files, patches, and icon files for software to be packaged.
/ust/src/RPM/SPECS
RPM SPEC files. A SPEC file is a file that contains information as well as scripts that are necessary
to build a package.
/ust/src/RPM/SRPMS
Contains the source RPM files which result from a build.
/ust/src/linux
Contains the source code for the Linux kernel.
/usr/src/linux/.config
The last kernel source configuration. This file is normally created through the 'make config', 'make
menuconfig' or 'make xconfig' steps during kernel compilation.
/usr/src/linux/.depend, /usr/src/linux/.hdepend
'make dep' checks the dependencies of the selections you made when you created your .config file. It
ensures that the required files can be found and it builds a list that is to be used during compilation.
Should this process be successful these two files are created.
/ust/src/linux/COPYING
GNU License
/ust/src/linux/CREDITS
A partial credits—file of people that have contributed to the Linux project. It is sorted by name and
formatted to allow easy grepping and beautification by scripts. The fields are: name (N), email (E),
web—address (W), PGP key ID and fingerprint (P), description (D), and snail-mail address (S).
/ust/src/linux/MAINTAINERS
List of maintainers and details on how to submit kernel changes.
/ust/src/linux/Makefile
Contains data necessary for compilation of a working kernel. It allows developers and end—users to
compile a kernel with a few simple steps (ie. make dep, make clean, make bzImage, make modules,
make modules_install) and also not have to worry about re—compiling everything from scratch if parts
of it have already been done so and are up to date.
/ust/src/linux/README
These are the release notes for Linux version 2.4. Read them carefully, as they tell you what this is all
about, explain how to install the kernel, and what to do if something goes wrong.
/ust/src/linux/REPORTING-BUGS
A suggested procedure for reporting Linux bugs. You aren't obliged to use the bug reporting format, it
is provided as a guide to the kind of information that can be useful to developers — no more.
/ust/src/linux/Rules.make
This file contains rules which are shared between multiple Makefiles.
/ust/src/linux/Documentation
Contains documentation that may be necessary in order to re—compile a kernel. However, it also
provides quite a lot of information about your Linux system in general as well. For those who wish to
seek further information on the contents of this directory you may consult the
/usr/src/linux/Documentation/00—-INDEX file. Further, more detailed documentation may be found in
/usr/src/linux/Documentation/Docbook. Of course, the contents of this directory is written in Docbook
but may be converted to pdf, ps or html using the make targets of 'pdfdocs', 'psdocs' and 'htmldocs'
respectively.
/usr/tmp
User space temporary files. This directory is not found on modern distributions at all and was most
likely created as a consequence of Linux's UNIX heritage.

1.18. /var

Contains variable data like system logging files, mail and printer spool directories, and transient and
temporary files. Some portions of /var are not shareable between different systems. For instance, /var/log,
/var/lock, and /var/run. Other portions may be shared, notably /var/mail, /var/cache/man, /var/cache/fonts, and
/var/spool/news. Why not put it into /usr? Because there might be circumstances when you may want to
mount /usr as read—only, e.g. if it is on a CD or on another computer. '/var' contains variable data, i.e. files and
directories the system must be able to write to during operation, whereas /usr should only contain static data.
Some directories can be put onto separate partitions or systems, e.g. for easier backups, due to network
topology or security concerns. Other directories have to be on the root partition, because they are vital for the
boot process. 'Mountable' directories are: '/home', '/mnt', '/tmp’, '/usr' and '/var'. Essential for booting are: '/bin’,
'/boot’, '/dev', 'fetc’, '/lib', '/proc' and '/sbin'.

If /var cannot be made a separate partition, it is often preferable to move /
var out of the root partition and into the /usr partition. (This is sometimes
done to reduce the size of the root partition or when space runs low in the
root partition.) However, /var must not be linked to /usr because this makes
separation of /usr and /var more difficult and is likely to create a naming
conflict. Instead, link /var to /usr/var.

Applications must generally not add directories to the top level of /var. Such
directories should only be added if they have some system-wide implication, and
in consultation with the FHS mailing list.

/var/backups
Directory containing backups of various key system files such as /etc/shadow, /etc/group,
/etc/inetd.conf and dpkg.status. They are normally renamed to something like dpkg.status.0,
group.bak, gshadow.bak, inetd.conf.bak, passwd.bak, shadow.bak

/var/cache
Is intended for cached data from applications. Such data is locally generated as a result of
time—consuming I/O or calculation. This data can generally be regenerated or be restored. Unlike
/var/spool, files here can be deleted without data loss. This data remains valid between invocations of
the application and rebooting of the system. The existence of a separate directory for cached data
allows system administrators to set different disk and backup policies from other directories in /var.

/var/cache/fonts
Locally—generated fonts. In particular, all of the fonts which are automatically generated by mktexpk
must be located in appropriately—named subdirectories of /var/cache/ fonts.

/var/cache/man
A cache for man pages that are formatted on demand. The source for manual pages is usually stored
in /usr/share/man/; some manual pages might come with a pre—formatted version, which is stored in
/usr/share/man/cat* (this is fairly rare now). Other manual pages need to be formatted when they are
first viewed; the formatted version is then stored in /var/man so that the next person to view the same
page won't have to wait for it to be formatted (/var/catman is often cleaned in the same way temporary
directories are cleaned).

/var/cache/'package—name'
Package specific cache data.

/var/cache/www
WWW proxy or cache data.

/var/crash

This directory will eventually hold system crash dumps. Currently, system crash dumps are not
supported under Linux. However, development is already complete and is awaiting unification into
the Linux kernel.

/var/db
Data bank store.

/var/games
Any variable data relating to games in /usr is placed here. It holds variable data that was previously
found in /usr. Static data, such as help text, level descriptions, and so on, remains elsewhere though,
such as in /ust/share/games. The separation of /var/games and /var/lib as in release FSSTND 1.2
allows local control of backup strategies, permissions, and disk usage, as well as allowing inter—host
sharing and reducing clutter in /var/lib. Additionally, /var/games is the path traditionally used by
BSD.

/var/lib
Holds dynamic data libraries/files like the rpm/dpkg database and game scores. Furthermore, this
hierarchy holds state information pertaining to an application or the system. State information is data
that programs modify while they run, and that pertains to one specific host. Users shouldn't ever need
to modify files in /var/lib to configure a package's operation. State information is generally used to
preserve the condition of an application (or a group of inter—related applications) between invocations
and between different instances of the same application. An application (or a group of inter—related
applications) use a subdirectory of /var/lib for their data. There is one subdirectory, /var/lib/misc,
which is intended for state files that don't need a subdirectory; the other subdirectories should only be
present if the application in question is included in the distribution. /var/lib/'name' is the location that
must be used for all distribution packaging support. Different distributions may use different names,
of course.

/var/local
Variable data for local programs (i.e., programs that have been installed by the system administrator)
that are installed in /usr/local (as opposed to a remotely mounted '/var' partition). Note that even
locally installed programs should use the other /var directories if they are appropriate, e.g., /var/lock.

/var/lock
Many programs follow a convention to create a lock file in /var/lock to indicate that they are using a
particular device or file. This directory holds those lock files (for some devices) and hopefully other
programs will notice the lock file and won't attempt to use the device or file.

Lock files should be stored within the /var/lock directory structure. Lock files for devices and other
resources shared by multiple applications, such as the serial device lock files that were originally
found in either /usr/spool/locks or /ust/spool/uucp, must now be stored in /var/lock. The naming
convention which must be used is LCK.. followed by the base name of the device file. For example,
to lock /dev/ttySO the file LCK..ttySO would be created. The format used for the contents of such lock
files must be the HDB UUCP lock file format. The HDB format is to store the process identifier (PID)
as a ten byte ASCII decimal number, with a trailing newline. For example, if process 1230 holds a
lock file, it would contain the eleven characters: space, space, space, space, space, space, one, two,
three, zero, and newline.

/var/log
Log files from the system and various programs/services, especially login (/var/log/wtmp, which logs
all logins and logouts into the system) and syslog (/var/log/messages, where all kernel and system
program message are usually stored). Files in /var/log can often grow indefinitely, and may require
cleaning at regular intervals. Something that is now normally managed via log rotation utilities such
as 'logrotate’. This utility also allows for the automatic rotation compression, removal and mailing of
log files. Logrotate can be set to handle a log file daily, weekly, monthly or when the log file gets to a
certain size. Normally, logrotate runs as a daily cron job. This is a good place to start troubleshooting
general technical problems.

/var/log/auth.log
Record of all logins and logouts by normal users and system processes.
/var/log/btmp
Log of all attempted bad logins to the system. Accessed via the lastb command.
/var/log/debug
Debugging output from various packages.
/var/log/dmesg
Kernel ring buffer. The content of this file is referred to by the dmesg command.
/var/log/gdm/
GDM log files. Normally a subset of the last X log file. See /var/log/xdm.log for mode details.
/var/log/kdm.log
KDM log file. Normally a subset of the last X log file. See /var/log/xdm.log for more details.
/var/log/messages
System logs.
/var/log/pacct
Process accounting is the bookkeeping of process activity. The raw data of process activity is
maintained here. Three commands can be used to access the contents of this file dump—acct, sa
(summary of process accounting) and lastcomm (list the commands executed on the system).
/var/log/utmp
Active user sessions. This is a data file and as such it can not be viewed normally. A human—readable
form can be created via the dump—utmp command or through the w, who or users commands.
/var/log/wtmp
Log of all users who have logged into and out of the system. The last command can be used to access
a human readable form of this file. It also lists every connection and run—level change.
/var/log/xdm.log
XDM log file. Normally subset of the last X startup log and pretty much useless in light of the details
the X logs is able to provide us with. Only consult this file if you have XDM specific issues otherwise
just use the X logfile.
/var/log/XFree86.0.log, /var/log/XFree86.7.1og
X startup logfile. An excellent resource for uncovering problems with X configuration. Log files are
numbered according to when they were last used. For example, the last log file would be stored in
/var/log/XFree86.0.log, the next /var/log/XFree86.9.1og, so on and so forth.
/var/log/syslog
The 'system' log file. The contents of this file is managed via the syslogd daemon which more often
than not takes care of all log manipulation on most systems.
/var/mail
Contains user mailbox files. The mail files take the form /var/mail/'username' (Note that /var/mail
may be a symbolic link to another directory). User mailbox files in this location are stored in the
standard UNIX mailbox format. The reason for the location of this directory was to bring the FHS
inline with nearly every UNIX implementation (it was previously located in /var/spool/mail). This
change is important for inter—operability since a single /var/mail is often shared between multiple
hosts and multiple UNIX implementations (despite NFS locking issues).
/var/opt
Variable data of the program packages in /opt must be installed in /var/opt/‘package—name', where
'package—name' is the name of the subtree in /opt where the static data from an add—on software
package is stored, except where superceded by another file in /etc. No structure is imposed on the
internal arrangement of /var/opt/'package—name'.
/var/run
Contains the process identification files (PIDs) of system services and other information about the
system that is valid until the system is next booted. For example, /var/run/utmp contains information
about users currently logged in.

/var/spool
Holds spool files, for instance for mail, news, and printing (Ipd) and other queued work. Spool files
store data to be processed after the job currently occupying a device is finished or the appropriate cron
job is started. Each different spool has its own subdirectory below /var/spool, e.g., the cron tables are
stored in /var/spool/cron/crontabs.

/var/tmp
Temporary files that are large or that need to exist for a longer time than what is allowed for /tmp.
(Although the system administrator might not allow very old files in /var/tmp either.)

/var/named
Database for BIND. The Berkeley Internet Name Domain (BIND) implements an Internet domain
name server. BIND is the most widely used name server software on the Internet, and is supported by
the Internet Software Consortium, www.isc.org.

/var/yp
Database for NIS (Network Information Services). NIS is mostly used to let several machines in a
network share the same account information (eg. /etc/passwd). NIS was formerly called Yellow Pages
(YP).

The following directories, or symbolic links to directories, are required in /var for FSSTND compliance:

/var/cache Application cache data

/var/1lib Variable state information

/var/local Variable data for /usr/local

/var/lock Lock files

/var/log Log files and directories

/var/opt Variable data for /opt

/var/run Data relevant to running processes

/var/spool Application spool data

/var/tmp Temporary files preserved between system reboots

Several directories are 'reserved' in the sense that they must not be used arbitrarily by some new application,
since they would conflict with historical and/or local practice. They are:

/var/backups
/var/cron
/var/msgs
/var/preserve

The following directories, or symbolic links to directories, must be in /var, if the corresponding subsystem is
installed:

account Process accounting logs (optional)

crash System crash dumps (optional)

games Variable game data (optional)

mail User mailbox files (optional)

vp Network Information Service (NIS) database files (optional)

1.19. /srv

/srv contains site-specific data which is served by this system.

This main purpose of specifying this is so that users may find
the location of the data files for particular service, and so that
services which require a single tree for readonly data, writable data

and scripts (such as cgi scripts) can be reasonably placed. Data that
is only of interest to a specific user should go in that users'
home directory.

The methodology used to name subdirectories of /srv is unspecified as there
is currently no consensus on how this should be done. One method for
structuring data under /srv is by protocol, eg. ftp, rsync, www, and cvs.
On large systems it can be useful to structure /srv by administrative
context, such as /srv/physics/www, /srv/compsci/cvs, etc. This setup will
differ from host to host. Therefore, no program should rely on a specific
subdirectory structure of /srv existing or data necessarily being stored in
/srv. However /srv should always exist on FHS compliant systems and should
be used as the default location for such data.

Distributions must take care not to remove locally placed files in these
directories without administrator permission.

This is particularly important as these areas will often contain both
files initially installed by the distributor, and those added by the
administrator.

1.20. tmp

This directory contains mostly files that are required temporarily. Many programs use this to create lock files
and for temporary storage of data. Do not remove files from this directory unless you know exactly what you
are doing! Many of these files are important for currently running programs and deleting them may result in a
system crash. Usually it won't contain more than a few KB anyway. On most systems, this directory is cleared
out at boot or at shutdown by the local system. The basis for this was historical precedent and common
practice. However, it was not made a requirement because system administration is not within the scope of the
FSSTND. For this reason people and programs must not assume that any files or directories in /tmp are
preserved between invocations of the program. The reasoning behind this is for compliance with IEEE
standard P1003.2 (POSIX, part 2).

