
Module 1: Signals & System 

Lecture 6: Basic Signals in Detail 

Basic Signals in detail 

We now introduce formally some of the basic signals namely  

1) The Unit Impulse function. 

2) The Unit Step function 

These signals are of considerable importance in signals and systems analysis. Later in the course 
we will see these signals as the building blocks for representation of other signals. We will cover 
both signals in continuous and discrete time. However, these concepts are easily comprehended 
in Discrete Time domain, so we begin with Discrete Time Unit Impulse and Unit Step function.  

The Discrete Time Unit Impulse Function: This is the simplest discrete time signal and is defined 
as  

          

The Discrete Time Unit Step Function u[n]: It is defined as 

      

 

Unit step in terms of unit impulse function 

Having studied the basic signal operations namely Time Shifting, Time Scaling and Time 
Inversion it is easy to see that  
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Similarly,  

Summing over we get  

Looking directly at the Unit Step Function we observe that it can be constructed as a sum of 
shifted Unit Impulse Functions  

                   

                   

  

The unit function can also be expressed as a running sum of the Unit Impulse Function 

 

                  

 We see that the running sum is 0 for n < 0 and equal to 1 for n >= 0 thus defining the Unit Step 
Function u[n].  

 

Sifting property  

Consider the product . The delta function is non zero only at the origin so it follows the 

signal is the same as . 
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 More generally   

It is important to understand the above expression. It means the product of a given signal x[n] 
with the shifted Unit Impulse Function is equal to the time shifted Unit Impulse Function 
multiplied by x[k]. Thus the signal is 0 at time not equal to k and at time k the amplitude is x[k]. 
So we see that the unit impulse sequence can be used to obtain the value of the signal at any time 
k. This is called the Sampling Property of the Unit Impulse Function. This property will be used 

in the discussion of LTI systems. For example consider the product . It gives 

. 

 

 

Likewise, the product x[n] u[n] i.e. the product of the signal u[n] with x[n] truncates the signal 
for n < 0 since u[n] = 0 for n <0 

 

 

Similarly, the product x[n] u[n-1] will truncate the signal for n < 1.  
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Now we move to the Continuous Time domain. We now introduce the Continuous Time Unit 
Impulse Function and Unit Step Function. 

 

Continuous time unit step and unit impulse functions  

The Continuous Time Unit Step Function: The definition is analogous to its Discrete Time 
counterpart i.e.  

u(t) = 0, t < 0 
      = 1, t ≥ 0 

 

The unit step function is discontinuous at the origin.  

The Continuous Time Unit Impulse Function:  The unit impulse function also known as the 
Dirac Delta Function, was first defined by Dirac as 

�  

In the strict mathematical sense the impulse function is a rather delicate concept. The Impulse 
function is not an ordinary function. An ordinary function is defined at all values of t. The 
impulse function is 0 everywhere except at t = 0 where it is undefined. This difficulty is resolved 
by defining the function as a GENERALIZED FUNCTION. A generalized function is one 
which is defined by its effect on other functions instead of its value at every instant of time. 

 

Analogy from discrete domain  

We will see that the impulse function is defined by its sampling property. We shall develop the 
theory by drawing analogy from the Discrete Time domain. Consider the equation  
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The discrete time unit step function is a running sum of the delta function. The continuous time 
unit impulse and unit step function are then related by  

 

The continuous time unit step function is a running integral of the delta function. It follows that 
the continuous time unit impulse can be thought of as the derivative of the continuous time unit 
step function. 

 

Now here arises the difficulty. The unit Step function is not differentiable at the origin. We take 
a different approach. Consider the signal whose value increases from 0 to 1 in a short interval of 
time say delta. The function u(t) can be seen as the limit of the above signal as delta tends to 0. 
Given this definition of Unit Step function we look into its derivative. The unit impulse function 
can be regarded as a rectangular pulse with a width of and height (1 / ). As tends to 0 the 
function approaches the Unit Impulse function and its derivative becomes narrower and higher 
and eventually a pulse of infinitesimal width of infinite height. All throughout the area under the 
pulse is maintained at unity no matter the value of . In effect the delta function has no duration 
but unit area. Graphically the function is denoted as spear like symbol at t = 0 and the "1" next to 
the arrow indicates the area of the impulse. After this discussion we have still not cleared the 
ambiguity regarding the value or the shape of the Unit Impulse Function at t = 0. We were only 
able to derive that the the effective duration of the pulse approaches zero while maintaining its 
area at unity. As we said earlier an Impulse Function is a Generalized Function and is defined by 
its effect on other functions and not by its value at every instant of time. Consider the product of 
an impulse function and a more well behaved continuous function. We will take the impulse 
function as the limiting case of a rectangular pulse of width and height (1/ ) as earlier. As 
evident from the figure the product function is 0 everywhere except in the small interval. In this 
interval the value of x(t) can be assumed to be constant and equal to x(0). Thus the product 
function is equal to the function scaled by a value equal to x(0). Now as tends to 0 the product 
tends to x(0) times the impulse function.  

 

i.e. The area under the product of the signal and the unit impulse function is equal to the value of 
the signal at the point of impulse. This is called the Sampling Property of the Delta function and 
defines the impulse function in the generalized function approach. As in discrete time 
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Or more generally, 

 

Also the product x(t)u(t) truncates the signal for t < 0.  
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Lecture 7: Linear Shift Invariant Systems 
 

Linear Shift-Invariant systems, called LSI systems for short, form a very important class of 
practical systems, and hence are of interest to us. They are also referred to as Linear Time-
Invariant systems, in case the independent variable for the input and output signals is time. 
Remember that linearity means that is y1(t) and y2(t) are responses of the system to signals x1(t) 
and x2(t) respectively, then the response to ax1(t) + bx2(t) is ay1(t) + by2(t).  
 
Shift invariance implies that the response of the system to x1(t - t0) is given by y1(t - t0) for all 
values of t and t0. Linear systems are of interest to us for primarily two reasons: first, several 
real-life systems can be well approximated by linear systems. Second, linear systems come with 
several properties which make their analysis simple. Similarly, shift-invariant systems allow us 
to use simpler math to analyse the system. As we proceed with our analysis, we will point out 
cases where some results (which are rather intuitive) are valid for only LSI systems. 

 

The unit impulse (discrete time): 

How do we go on with studying the responses of systems to various signals? It would be great if 
we can study the response of the system to one (or a few) signal(s) and predict the responses to 
all signals. It turns out that LSI systems can in fact be treated in such manner. The signal whose 
response we study is the unit impulse signal. If we know the response of the system to the unit 
impulse (called, for obvious reasons, the unit impulse response), then the system is completely 
characterized - we can find the response of the system to all possible inputs. This follows rather 
intuitively in discrete signals, so let us begin our analysis with discrete signals. In discrete 
signals, the unit impulse is a signal which has zero values everywhere except at one point, where 
its values is 1. Typically, this point is taken to be the origin (n=0). 

 

The unit impulse is denoted by the Greek letter delta  . For example, the above impulses are 

denoted by and respectively.  
  

Note: We are towards invoking shift invariance of the system here - we have shifted the signal 

by 4 units.  
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We can thus use to pick up a certain point from a discrete signal: suppose our signal x[n] is 

multiplied by  then the value of is zero at all point except n=k. At 
this point, the value of x1[k] equals the value x[k]. 

                                   

Now, we can express any discrete signal as a sum of several such terms: 

 

This may seem redundant now, but later we shall find this notation useful when we take a look at 
convolutions etc. Here, we also want to introduce a convention for denoting discrete signals. For 
example, the signal x[n] and its representation are shown below: 

                

The number below the arrow shows the starting point of the time sequence, and the numbers 
above are the values of the dependent variable at successive instants from then onwards. We may 
not use this too much on the web site, but this turns out to be a convenient notation on paper.  
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The unit impulse response: 

The response of a system to the unit impulse is of importance, for as we shall show below, it 
characterizes the LSI system completely. Let us consider the following system and calculate the 
unit step response to it: y[n] = x[n] - 2x[n-1] + 3x[n-2]. Now, we apply a unit step x[n]=δ[n] to 
the system and calculate the response : 

 

n x[n] x[n-1] x[n-2] y[n] 
..., -1 0 0 0 0 

0 1 0 0 1 
1 0 1 0 -2 
2 0 0 1 3 

3, ... 0 0 0 0 

The graphical calculation and the response are as follows: 
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Arbitrary input signals: 

Now let us consider some other input, say x[0]=1, x[1]=1 and x=0 for n other than 0 and 1. What 
will be the response of the above LSI system to this input? We calculate the response in a table 
as below 

y[n] = x[n] - 2x[n-1] + 3x[n-2]  
x[n]=  +  

n 
y1[n] from  y2[n] from -  y[n] = y1[n] + y2[n] 

..., -1 0 0 0 

0 1 0 1 

1 -2 1 -1 

2 3 -2 1 

3 0 3 3 

4, ... 0 0 0 

Ah! What we have actually done, is applied the additive (linear), homogenous (linear) and shift 
invariance properties of the system to get the output. First, we decomposed the input signal as a 

sum of known signals: first being the unit step . The second signal is derived from the unit 
step by shifting it by 1. Thus, our input signal is as shown in the figure below. Then, we invoke 
the LSI properties of the system to get the responses to the individual signals: the first calculation 

is show above, while the calculation of response for is shown below. 
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Finally, we add the two responses to get the response y[n] of the system to the input x[n]. The 
image below shows the final response with an alternative method of calculating 
it:                                                                                                                       
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This brings us up to the concept of convolutions, covered in detail in a later section.  
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Lecture 8: Classification of Systems 
 

Properties of discrete variable systems 

We have classified systems into three classes - Continuous-time systems, Discrete-time systems 
and Hybrid systems. Now that we have introduced some system properties, let us see what 
properties are relevant to which classes of systems.  

Let us first consider examples of different classes of systems. 

 

Continuous-time systems 
Continuous-Continuous systems 

1. Tree swaying in the wind: 
Wind - described by its speed, direction - is 
a continuous-time input. 
Movement of branches is continuous-time 
output signal.  

Discrete-time systems 
Discrete-Discrete systems 

1. Logic circuits: 
Discrete logic inputs are processed to give 
discrete logic outputs.  

Hybrid systems 
Continuous-Discrete systems 

1.Eye: sees continuous image, but sends a 
discrete map to the brain 

2.Computer microphone: Sampler converts 
a continuous time signal into a discrete 
time signal.(Sampler forms an important 
system in today’s digital world - we shall 
look at this in great detail later in the 
course)  

Hybrid systems 
Discrete-Continuous systems 

1.Brain : gets a discrete map from the eye, 
and completes a smooth, continuous 
picture 

2. Computer speaker and sound card - a 
digital music output given by the computer 
is smoothed out and played as a continuous 
waveform.  

 

Properties of systems 

In early parts of this course, we shall concern ourselves with mainly the first two classes, viz. 
Continuous-time and Discrete-time systems, but later we shall also deal with Hybrid systems as 
well. So, we find it worthwhile here to take a look at what properties the systems of various 
classes can have: 
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Property Continuous input - 
Continuous output  

Discrete input- 
Discrete output  

Continuous- 
Discrete input/ 
Discrete- 
Continuous output  

Memory Yes 

If input and output 
are of the same type 

Yes 

If input and output 
are of the same type 

No 

However, we can 
define a restricted 
version of memory 

if there is a 
correspondence in 

the input and output 
variables (e.g.: 
continuous and 
discrete time) 

Causality Yes 

If input and output 
are of the same type 

Yes 

If input and output 
are of the same type 

No 

A restricted version 
of causality can be 

defined: “If the 
inputs are same 
upto an instant 

corresponding to a 
discrete variable, 

then the outputs of a 
causal system are 

same 

Shift invariance 
(Time invariance) 

Yes 

If input and output 
are of the same type 

Yes 

If input and output 
are of the same type 

No 

We can define shift 
invariance in cases 

where the inputs are 
shifted by certain 

quanta 
corresponding to 

the spacing in 
discrete variables. 

Stability Yes Yes Yes 

Linearity Yes Yes Yes 
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Note that this is a table of properties which the system can have; they are not necessary 
properties of a system. Hence, we can find a Continuous-time system that is stable (though there 
may be Continuous-time systems which are unstable), but it is impossible to apply the concept of 
memory to a discrete-continuous system without modifying the concept itself. 
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Lecture 9: Continuous LTI Systems 

In this section our goal is to derive the response of a LTI system for any arbitrary continuous 
input x(t). In complete analogy with the discussion on Discrete time analysis we begin by 
expressing x(t) in terms of impulses. In discrete time we represented a signal in terms of scaled 
and shifted unit impulses. In continuous time, however the unit impulse function is not an 
ordinary function (i.e. it is not defined at all points and we prefer to call the unit impulse function 
a "mathematical object"), it is a generalized function ( it is defined by its effect on other signals) . 

Recall the previous discussion on the development of the unit impulse function. It can be 
regarded as the idealization of a pulse of width and height 1/ . 

One can arrive at an expression for an arbitrary input, say x(t) by scaling the height of the 
rectangular impulse by a factor such that it's value at t coincides with the value of x(t) at the mid-
point of the width of the rectangular impulse. The entire function is hence divided into such 
rectangular impulses which give a close approximation to the actual function depending upon 
how small the interval is taken to be. For example let x(t) be a signal. It can be approximated as : 

  

The given input x(t) is approximated with such narrow rectangular pulses, each scaled to the 
appropriate value of x(t) at the corresponding t (which lies at the midpoint of the base of width 

. This is called the staircase approximation of x(t). In the limit as the pulse-width ( ) 
approaches zero, the rectangular pulse becomes finer in width and the function x(t) can be 
represented in terms of impulses by the following expression,  

 

This summation is an approximation. As approaches zero, the approximation increases in 
accuracy and when delta becomes infinitesimally small, this error becomes zero and the above 
summation is converted into the following integral expression.  

 

For example, take x(t) = u(t)  
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since u(t) = 0 for t < 0 and u(t) = 1 for t > 0. In complete analogy with the development on 
sampling property of discrete unit impulse we have,  

 

This is known as Sifting Property of the continuous time impulse. Note that the unit impulse 
puts unit area into zero width. 

 

The Convolution Integral 

We now want to find the response for an arbitrary continuous time signal as the superposition of 
scaled and shifted pulses just as we did for discrete time signal. For a continuous LSI system, let 
h(t) be the response to the unit impulse signal. Then,  

 

by shift invariance,  

 

by homogeneity,  

  

by additivity, ( Note : We can perform additivity on infinite terms only if the sum/integral 
converges. ) 

 

This is known as the continuous time convolution of x(t) and h(t). This gives the system 
response y(t) to the input x(t) in terms of unit impulse response h(t). The convolution of two 
signals h(t) and x(t) will be represented symbolically as  

  

where as previously seen, 
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To explain this graphically,  

Consider the following input which (as explained above) can be considered to be an 
approximation of a series of rectangular impulses. And it can be represented using the 
convolution sum as  

  

Hence, by merely knowing the impulse response one can predict the response of the signal x(t) 
by using the given formula for convolution. 

 

RC System 

Consider a RC system consisting of a resistor and a capacitor. We have to find out what the 

response of this system is to the unit impulse  

 

First let us understand the response to  

If the input is the unit step function u(t) then the output of the system will be . 

Let us call this output of the system S(t). Hence we can say that the response to will be 
given as follows: 
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Now as  the response of will be equal to h(t) 

Taking limit as on both sides and using we get  

 

 
By the sifting property we get   

 

Hence if we are given the unit step response u(t) we have been able to calculate the continuous 
impulse response of the system. Next we shall see how we can get the unit step response from 
the impulse response of the same system. 

Impulse response of RC system 

We have seen how we could calculate the impulse response from the unit step 
response of a system. Now we shall calculate the unit step response, or in general the 
response to any input signal, given its impulse response. We shall use convolution to 
obtain the required result. 

The unit impulse , when fed into the RC system gives the corresponding impulse response 
h(t), which in this case is given by 

 

We shall now find the response to the input signal u(t).  

The convolution of an input signal x(t) and the impulse response of a system h(t) is given by the 
formula: 
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But in this case x(t) = u(t), and so the output signal y(t) will be given by : 

 

Now we have if and only if .  In all other cases  

Hence the given equation for y(t) will now simplify to : 

  

Solving which we get,                                 

 

which is the response to the unit step function. 

Hence we have now shown how to calculate the impulse response given the unit step response 
and also any response given the impulse response. Moreover we can now say that given either 
the unit step response or the impulse response we can calculate the response to any other input 
signals.  

 

Convolution Operation 
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We now interpret the convolution (x*h)(t) as the common (shaded) area enclosed under the 
curves x(v) and h(t-v) as v varies over the entire real axis. 
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x(v) is the given input function, with the independent variable now called v. h(t-v) is the impulse 
response obtained by inverting h(v) and then shifting it by t units on the v-axis. 

As t increases clearly h(t-v) can be considered to be a train moving towards the right,  and at 
each point on the v-axis, the area under the product x(v) and h(t-v) is the value of y(t) at that t. 

 

 

 

 

Lecture 10: Properties of LTI Systems 
 

Properties of LTI System  

In the preceding chapters, we have already derived expressions for discrete as well as continuous 
time convolution operations. 

 Discrete : Continuous :  

 

 

We shall now discuss the important properties of convolution for LTI systems. 

1) Commutative property:  

By the commutative property, the following equations hold true: 

a) Discrete time:  

  

Proof: We know that 

 

 

Hence we make the following substitution (n - k = l)  
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 The above expression can be written as 

 

 

So it is clear from the derived expression that 

  

 Note:  

1. 'n' remains constant during the convolution operation so 'n' remains constant in the substitution 
“n-k = l” even as 'k' and 'l' change. 

2. “l” goes from  to + , this would not have been so had 'k' been bounded.( e.g :- 0 < k < 11 
would make n < l < n – 11) 

 

b) Continuous Time:  

 

Proof:  
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Thus we proved that convolution is commutative in both discrete and continuous variables.  

Thus the following two systems: One with input signal x(t) and impulse response h(t) and the 
other with input signal h(t) and impulse response x(t) both give the same output y(t). 

 

 

 

2) Distributive Property: 

By this property we mean that convolution is distributive over addition. 
 
a) Discrete: 

 

b) Continuous:

 

A parallel combination of LTI systems can be replaced by an equivalent LTI system which is 
described by the sum of the individual impulse responses in the parallel combination. 
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3) Associative property 

a) Discrete time: 

   

Proof: We know that   
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Making the substitutions: p = k ; q = (l - k) and comparing the two equations makes our proof 
complete.  

Note: As k and l go from  to +  independently of each other, so do p and q, however p 
depends on k, and q depends on l and k. 

 

b) Continuous time :   

 

Lets substitute 

 

The Jacobian for the above transformation is  
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Doing some further algebra helps us see equation (2) transforming into equation (1) ,i.e. 
essentially they are the same. The limits are also the same. Thus the proof is complete. 

 

Implications 

This property (Associativity) makes the representation y[n] = x[n]*h[n] *g[n] unambiguous. 

From this property, we can conclude that the effective impulse response of a cascaded 
LTI system is given by the convolution of their individual impulse responses. 

       

 

Consequently the unit impulse response of a cascaded LTI system is independent of the order in 
which the individual LTI systems are connected. 

 Note: All the above three properties are certainly obeyed by LTI systems, but may / may not 
hold for non-LTI systems in, as seen from the following example: 
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4) LTI systems and Memory  

Recall that a system is memory less if its output depends on the current input only. From the 
expression: 

  

 It is easily seen that y[n] depends only on x[n] if and only if  

 

 Hence  

  

 
 

 5) Invertibility:  
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A system is said to be invertible if there exists an inverse system which when connected in series 
with the original system produces an output identical to the input. 

 We know that  

  

                 

6) Causality:  

a) Discrete time: 

             {By Commutative Property}  

In order for a discrete LTI system to be causal, y[n] must not depend on x[k] for k > n. For this to 
be true h[n-k]'s corresponding to the x[k]'s for k > n must be zero. This then requires the impulse 
response of a causal discrete time LTI system satisfy the following conditions: 

  

Essentially the system output depends only on the past and the present values of the input. 

 Proof: (By contradiction) 

 Let in particular h[k] is not equal to 0, for some k<0 
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  {Refer the eqn. 
above} 

So we need to prove that for all x[n] = 0, n < 0, y[0] = 0 

 

Now we take a signal defined as  

  

 This signal is zero elsewhere. Therefore we get the following result : 

 

 We have come to the result that y[0] 0, for the above assumption. Our assumption stands 
void.  So we conclude that y[n] cannot be independent of x[k] unless h[k] = 0 for k < 0 

 Note: Here we ensured a non-zero summation by choosing x[n-k]'s as conjugate of h[k]'s. 

 

 b) Continuous time: 

  

 In order for a continuous LTI system to be causal, y(t) must not depend on x(v) for v > t . For 
this to be true h(t-v)’s corresponding to the x(v)’s for v > t must be zero. 

This then requires the impulse response of a causal continuous time LTI system satisfy the 
following conditions: 
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 As stated before in the discrete time analysis, the system output depends only on the past and the 
present values of the input. 

 Proof: ( By contradiction ) 

 Suppose, there exists > 0, such that h(- ) 0. 

  Now consider  

Since, 

          

   System is not causal, a contradiction. Hence, 

  

 

7) Stability: 

A system is said to be stable if its impulse response satisfies the following criterion:  

 

Theorem:  

Stability , in the Discrete domain, OR 
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Stability , in the Continuous domain. 

 

Proof of sufficiency:  

Suppose , 

We have  

If x[n] is bounded i.e. , then: 

 

But as  

 

Proof of Necessity: 

Take any n. 

 

If | h[k] | = 0, then x[n-k] is bounded with bound 0  
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Then,  

Hence  But since the system is stable , which in turn 

implies that  

Hence if y[n] is bounded then the condition must hold. 

Hence Proved 

A similar proof follows in continuous time when you replace by integral . 
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