
 

Introduction to 
Control Systems 

What are control systems? Why do we study 
them? How do we identify them? The 
chapters in this section should answer these 
questions and more. 

mywbut.com

1



Introduction 
What are Control Systems? 
The study and design of automatic Control Systems, a field known as control engineering, is a large and 
expansive area of study. Control systems, and control engineering techniques have become a pervasive part of 
modern technical society. From devices as simple as a toaster, to complex machines like space shuttles and 
rockets, control engineering is a part of our everyday life. This book will introduce the field of control 
engineering, and will build upon those foundations to explore some of the more advanced topics in the field. Note, 
however, that control engineering is a very large field, and it would be foolhardy of any author to think that they 
could include all the information into a single book. Therefore, we will be content here to provide the foundations 
of control engineering, and then describe some of the more advanced topics in the field. 

Control systems are components that are added to other components, to increase functionality, or to meet a set of 
design criteria. Let's start off with an immediate example: 

We have a particular electric motor that is supposed to turn at a rate of 40 RPM. To achieve this speed, 
we must supply 10 Volts to the motor terminals. However, with 10 volts supplied to the motor at rest, it 
takes 30 seconds for our motor to get up to speed. This is valuable time lost. 

Now, we have a little bit of a problem that, while simplistic, can be a point of concern to people who are both 
designing this motor system, and to the people who might potentially buy it. It would seem obvious that we 
should increase the power to the motor at the beginning, so that the motor gets up to speed faster, and then we can 
turn the power back down to 10 volts once it reaches speed. 

Now this is clearly a simplisitic example, but it illustrates one important point: That we can add special 
"Controller units" to preexisting systems, to increase performance, and to meet new system specifications. There 
are essentially two methods to approach the problem of designing a new control system: the Classical Approach, 
and the Modern Approach. 

It will do us good to formally define the term "Control System", and some other terms that are used throughout 
this book: 

Control System  
A Control System is a device, or a collection of devices that manage the behavior of other devices. 
Some devices are not controllable. A control system is an interconnection of components 
connected or related in such a manner as to command, direct, or regulate itself or another system.  

Controller  
A controller is a control system that manages the behavior of another device or system.  

Compensator  
A Compensator is a control system that regulates another system, usually by conditioning the 
input or the output to that system. Compensators are typically employed to correct a single design 
flaw, with the intention of affecting other aspects of the design in a minimal manner.  
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Classical and Modern 
Classical and Modern control methodologies are named in a misleading way, because the group of techniques 
called "Classical" were actually developed later then the techniques labled "Modern". However, in terms of 
developing control systems, Modern methods have been used to great effect more recently, while the Classical 
methods have been gradually falling out of favor. Most recently, it has been shown that Classical and Modern 
methods can be combined to highlight their respective strengths and weaknesses. 

Classical Methods, which this book will consider first, are methods involving the Laplace Transform domain. 
Physical systems are modeled in the so-called "time domain", where the response of a given system is a function 
of the various inputs, the previous system values, and time. As time progresses, the state of the system, and it's 
response change. However, time-domain models for systems are frequently modeled using high-order differential 
equations, which can become impossibly difficult for humans to solve, and some of which can even become 
impossible for modern computer systems to solve efficiently. To counteract this problem, integral transforms, 
such as the Laplace Transform, and the Fourier Transform can be employed to change an Ordinary 
Differential Equation (ODE) in the time domain into a regular algebraic polynomial in the transform domain. 
Once a given system has been converted into the transform domain, it can be manipulated with greater ease, and 
analyzed quickly and simply, by humans and computers alike. 

Modern Control Methods, instead of changing domains to avoid the complexities of time-domain ODE 
mathematics, converts the differential equations into a system of lower-order time domain equations called State 
Equations, which can then be manipulated using techniques from linear algebra (matrices). This book will 
consider Modern Methods second. 

A third distinction that is frequently made in the realm of control systems is to divide analog methods (classical 
and modern, described above) from digital methods. Digital Control Methods were designed to try and 
incorporate the emerging power of computer systems into previous control methodologies. A special transform, 
known as the Z-Transform, was developed that can adequately describe digital systems, but at the same time can 
be converted (with some effort) into the Laplace domain. Once in the Laplace domain, the digital system can be 
manipulated and analyzed in a very similar manner to Classical analog systems. For this reason, this book will not 
make a hard and fast distinction between Analog and Digital systems, and instead will attempt to study both 
paradigms in parallel. 
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History 
The field of control systems started 
essentially in the ancient world. Early 
civilizations, notably the greeks and 
the arabs were heaviliy preoccupied 
with the accurate measurement of 
time, the result of which were several 
"water clocks" that were designed and 
implemented. 

However, there was very little in the 
way of actual progress made in the 
field of engineering until the 
beginning of the renassiance in 
Europe. Leonhard Euler (for whom 
Euler's Formula is named) 
discovered a powerful integral 
transform, but Pierre Simon-Laplace 
used the transform (later called the 
Laplace Transform) to solve 
complex problems in probability theory. 

Joseph Fourier was a court mathematician in France under Napoleon I. He created a special function 
decomposition called the Fourier Series, that was later generalized into an integral transform, and named in his 
honor (the Fourier Transform). 

The "golden age" of control engineering occured between 1910-1945, 
where mass communication methods were being created and two world 
wars were being fought. During this period, some of the most famous 
names in controls engineering were doing their work: Nyquist and Bode. 

Hendrik Wade Bode and Harry Nyquist, especially in the 1930's while 
working with Bell Laboratories, created the bulk of what we now call 
"Classical Control Methods". These methods were based off the results of 
the Laplace and Fourier Transforms, which had been previously known, 
but were made popular by Oliver Heaviside around the turn of the 
century. Previous to Heaviside, the transforms were not widely used, nor 
respected mathematical tools. 

Bode is credited with the "discovery" of the closed-loop feedback system, 
and the logarithmic plotting technique that still bears his name (bode 
plots). Harry Nyquist did extensive research in the field of system 
stability and information theory. He created a powerful stability criteria 
that has been named for him (The Nyquist Criteria). 

Pierre-Simon Laplace 

1749-1827 

Joseph Fourier 

1768-1840 

 
Oliver Heaviside 
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Modern control methods were introduced in the early 1950's, as a way to bypass some of the shortcomings of the 
classical methods. Modern control methods became increasingly popular after 1957 with the invention of the 
computer, and the start of the space program. Computers created the need for digital control methodologies, and 
the space program required the creation of some "advanced" control techniques, such as "optimal control", "robust 
control", and "nonlinear control". These last subjects, and several more, are still active areas of study among 
research engineers. 

Branches of Control Engineering 
Here we are going to give a brief listing of the various different methodologies within the sphere of control 
engineering. Oftentimes, the lines between these methodologies are blurred, or even erased completely. 

Classical Controls  
Control methodologies where the ODEs that describe a system are transformed using the Laplace, Fourier, 
or Z Transforms, and manipulated in the transform domain.  

Modern Controls  
Methods where high-order differential equations are broken into a system of first-order equations. The 
input, output, and internal states of the system are described by vectors called "state variables".  

Robust Control  
Control methodologies where arbitrary outside noise/disturbances are accounted for, as well as internal 
inaccuracies caused by the heat of the system itself, and the environment.  

Optimal Control  
In a system, performance metrics are identified, and arranged into a "cost function". The cost function is 
minimized to create an operational system with the lowest cost.  

Adaptive Control  
In adaptive control, the control changes it's response characteristics over time to better control the system.  

Nonlinear Control  
The youngest branch of control engineering, nonlinear control encompasses systems that cannot be 
described by linear equations or ODEs, and for which there is often very little supporting theory available.  

Game Theory  
Game Theory is a close relative of control theory, and especially robust control and optimal control 
theories. In game theory, the external disturbances are not considered to be random noise processes, but 
instead are considered to be "opponents". Each player has a cost function that they attempt to minimize, 
and that their opponents attempt to maximize.  

This book will definately cover the first two branches, and will hopefully be expanded to cover some of the later 
branches, if time allows. 

MATLAB 
MATLAB is a programming tool that is commonly used in the 
field of control engineering. We will not consider MATLAB in the 
main narrative of this book, but we will provide an appendix that 
will show how MATLAB is used to solve control problems, and 
design and model control systems. This appendix can be found at: 
Control Systems/MATLAB. 

For more information on MATLAB in general, see: MATLAB Programming 

Nearly all textbooks on the subject of control systems, linear systems, and system analysis will use MATLAB as 
an integral part of the text. Students who are learning this subject at an accredited university will certainly have 
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seen this material in their textbooks, and are likely to have had MATLAB work as part of their classes. It is from 
this perspective that the MATLAB appendix is written. 

There are a number of other software tools that are useful in the analysis and design of control systems. 
Additional information can be added in the appendix of this book, depending on the experiance and prior 
knowledge of contributors. 
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System Identification 
Systems 
We will begin our study by talking about systems. Systems, in the barest sense, are devices that take input, and 
produce an output. The output is related to the input by a certain relation known as the system response. The 
system response usually can be modeled with a mathematical relationship between the system input and the 
system output. 

There are many different types of systems, and the process of classifying systems in these ways is called system 
identification. 

System Identification 
Physical Systems can be divided up into a number of different catagories, depending on particular properties that 
the system exhibits. Some of these system classifications are very easy to work with, and have a large theory base 
for studying. Some system classifications are very complex, and have still not been investigated with any degree 
of success. This book will focus primarily on linear time-invariant (LTI) systems. LTI systems are the easiest 
class of system to work with, and have a number of properties that make them ideal to study. In this chapter, we 
will discuss some properties of systems, and we will define exactly what an LTI system is. 

Additivity 
A system satisfies the property of additivity, if a sum of inputs results in a sum of outputs. By definition: an input 
of  results in an output of . To determine whether a 
system is additive, we can use the following test: 

Given a system f that takes an input x and outputs a value y, we use two inputs (x1 and x2) to produce two 
outputs: 

 
 

  

Now, we create a composite input that is the sum of our previous inputs: 

 
 

Then the system is additive if the following equation is true: 

 
 

Example: Sinusoids 

Given the following equation: 
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We can create a sum of inputs as: 

 
 

and we can construct our expected sum of outputs: 

 
 

Now, plugging these values into our equation, we can test for equality: 

 
 

And we can see from this that our equality is not satisfied, and the equation is not additive. 

Homogeniety 
A system satisfies the condition of homogeniety if an input scaled by a certain factor produces an output scaled 
by that same factor. By definition: an input of  results in an output of . In other words, to see if function 
f() is homogenous, we can perform the following test: 

We stimulate the system f with an arbitrary input x to produce an output y: 

 
 

Now, we create a second input x1, scale it by a multiplicative factor C (C is an arbitrary constant value), and 
produce a corresponding output y1 

 
 

Now, we assign x to be equal to x1:
 

 
 

Then, for the system to be homogenous, the following equation must be true: 

 
 

Example: Straight-Line 

Given the equation for a straight line: 
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And comparing the two results, we see they are not equal: 

 
 

Therefore, the equation is not homogenous. 

Linearity 
A system is considered linear if it satisfies the conditions of Additivity and Homogeniety. In short, a system is 
linear if the following is true: 

We take two arbitrary inputs, and produce two arbitrary outputs: 

 
 

  

Now, a linear combination of the inputs should produce a linear combination of the outputs: 

 
 

This condition of additivity and homogeniety is called superposition. A system is linear if it satisfies the 
condition of superposition. 

Example: Linear Differential Equations 

Is the following equation linear: 

 

 

To determine whether this system is linear, we construct a new composite input: 

 
 

And we create the expected composite output: 

 
 

And plug the two into our original equation: 
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We can factor out the derivative operator, as such: 

 

 

And we can convert the various composite terms into the respective variables, to prove that this system is 
linear: 

 

 

For the record, derivatives and integrals are linear operators, and ordinary differentialy equations 
typically are linear equations. 

Causality 
Causality is a property that is very similar to memory. A system is called causal if it is only dependant on past or 
current inputs. A system is called non-causal if the output of the system is dependant on future inputs. This book 
will only consider causal systems, because they are easier to work with and understand, and since most practical 
systems are causal in nature. 

Memory 
A system is said to have memory if the output from the system is dependant on past inputs (or future inputs!) to 
the system. A system is called memoryless if the output is only dependant on the current input. Memoryless 
systems are easier to work with, but systems with memory are more common in digital signal processing 
applications. 

Systems that have memory are called dynamic systems, and systems that do not have memory are instantaneous 
systems. 

Time-Invariance 
A system is called time-invariant if the system relationship between the input and output signals is not dependant 
on the passage of time. If the input signal  produces an output  then any time shifted input, 

, results in a time-shifted output  This property can be satisfied if the transfer function of 
the system is not a function of time except expressed by the input and output. If a system is time-invariant then the 
system block is commutative with an arbitrary delay. We will discuss this facet of time-invariant systems later. 

To determine if a system f is time-invariant, we can perform the following test: 

We apply an arbitrary input x to a system and produce an arbitrary output y: 
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And we apply a second input x1 to the system, and produce a second output:
 

 
 

Now, we assign x1 to be equal to our first input x, time-shifted by a given constant value δ:
 

 
 

Finally, a system is time-invariant if y1 is equal to y shifted by the same value δ:
 

 
 

LTI Systems 
A system is considered to be a Linear Time-Invariant (LTI) system if it satisfies the requirements of time-
invariance and linearity. LTI systems are one of the most important types of systems, and we will consider them 
almost exclusively in this book. 

Lumpedness 
A system is said to be lumped if one of the two following conditions are satisfied: 

1. There are a finite number of states  
2. There are a finite number of state variables.  

Systems which are not lumped are called distributed. We will not discuss distributed systems much in this book, 
because the topic is very complex. 

Relaxed 
A system is said to be relaxed if the system is causal, and at the initial time t0 the output of the system is zero.

 

 
 

Stability 
Stability is a very important concept in systems, but it is also one 
of the hardest function properties to prove. There are several 
different criteria for system stability, but the most common 
requirement is that the system must produce a finite output when 
subjected to a finite input. For instance, if we apply 5 volts to the 
input terminals of a given circuit, we would like it if the circuit 
output didn't approach infinity, and the circuit itself didn't melt or 
explode. This type of stability is often known as "Bounded Input, Bounded Output" stability, or BIBO. 

Control Systems engineers will frequently 
say that an unstable system has 

"exploded". Some physical systems 
actually can rupture or explode when they 

go unstable. 
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Digital and Analog 
Digital and Analog 
There is a significant distinction between an analog system and a digital system, in the same way that there is a 
significant difference between analog and digital data. This book is going to consider both analog and digital 
topics, so it is worth taking some time to discuss the differences, and to display the different notations that will be 
used with each. 

Continuous Time 

A signal is called continuous-time if it is defined at every time t. 

A system is a continuous-time system if it takes a continuous-time input signal, and outputs a continuous-time 
output signal. 

Discrete Time 

A signal is called discrete-time if it is only defined for particular points in time. A digital system takes discrete-
time input signals, and produces discrete-time output signals. 

Quantized 

A signal is called Quantized if it can only be certain values, and cannot be other values. 

Analog 
By definition: 

Analog  
A signal is considered analog if it is defined for all points in time, and if it can take any real 
magnitude value within it's range.  

An analog system is a system that represents data using a direct conversion from one form to another. 

Example: Motor 

If we have a given motor, we can show that the output of the motor (rotation in units of radians per 
second, for instance) is a function of the amount of voltage and current that are input to the motor. We 
can show the relationship as such: 

 
 

Where  is the output in terms of Rad/sec, and f(v) is the motor's conversion function between the input 
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voltage (v) and the output. For any value of v we can calculate out specifically what the rotational speed 
of the motor should be. 

Example: Analog Clock 

Consider a standard analog clock, which represents the passage of time though the angular position of the 
clock hands. We can denote the angular position of the hands of the clock with the system of equations: 

 
 

  
  

Where φh is the angular position of the hour hand, φm is the angular position of the minute hand, and φs 
is the angular position of the second hand. The positions of all the different hands of the clock are 
dependant on functions of time. 

Different positions on a clock face correspond directly to different times of the day. 

Digital 
Digital data is represented by discrete number values. By definition: 

Digital  
A signal or system that is discrete-time and quantized.  

Digital data always have a certain granularity, and therefore there will almost always be an error associated with 
using such data, especially if we want to account for all real numbers. The tradeoff, of course, to using a digital 
system is that our powerful computers with our powerful, Moore's law microprocessor units, can be instructed to 
operate on digital data only. This benefit more then makes up for the shortcomings of a digital representation 
system. 

Discrete systems will be denoted inside square brackets, as is a common notation in texts that deal with discrete 
values. For instance, we can denote a discrete data set of ascending numbers, starting at 1, with the following 
notation: 

x[n] = [1 2 3 4 5 6 ...]  

n, or other letters from the central area of the alphabet (m, i, j, k, l, for instance) are commonly used to denote 
discrete time values. Analog, or "non-discrete" values are denoted in regular expression syntax, using parenthesis. 

Example: Digital Clock 

As a common example, let's consider a digital clock: The digital clock represents time with binary 
electrical data signals of 1 and 0. The 1's are usually represented by a positive voltage, and a 0 is 
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generally represented by zero voltage. Counting in binary, we can show that any given time can be 
represented by a base-2 numbering system: 

But what happens if we want to display a fraction of a minute, or a fraction of a second? A typical digital 
clock has a certain amount of precision, and it cannot express fractional values smaller then that 
precision. 

Hybrid Systems 
Hybrid Systems are systems that have both analog and digital components. Devices called samplers are used to 
convert analog signals into digital signals, and Devices called reconstructors are used to convert digital signals 
into analog signals. Because of the use of samplers, hybrid systems are frequently called sampled-data systems. 

Example: Car Computer 

Most modern automobiles today have integrated computer systems, that monitor certain aspects of the 
car, and actually help to control the performance of the car. The speed of the car, and the rotational speed 
of the transmission are analog values, but a sampler converts them into digital values so the car computer 
can monitor them. The digital computer will then output control signals to other parts of the car, to alter 
analog systems such as the engine timing, the suspension, the brakes, and other parts. Because the car has 
both digital and analog components, it is a hybrid system. 

Continuous and Discrete 
A system is considered continuous-time if the signal exists for all 
time. Frequently, the terms "analog" and "continuous" will be used 
interchangably, although they are not strictly the same. 

Discrete systems can come in three flavors: 

1. Discrete time  
2. Discrete magnitude (quantized)  
3. Discrete time and magnitude (digital)  

Discrete magnitude systems are systems where the signal value can only have certain values. Discrete time 
systems are systems where signals are only available (or valid) at particular times. Computer systems are discrete 
in the sense of (3), in that data is only read at specific discrete time intervals, and the data can have only a limited 

Minute Binary Representation
1 1
10 1010
30 11110
59 111011

Note: 
We are not using the word "continuous" 

here in the sense of continuously 
differentiable, as is common in math 

texts. 
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number of discrete values. 

A discrete-time system has as sampling time value associated with it, such that each discrete value occurs at 
multiples of the given sampling time. We will denote the sampling time of a system as T. We can equate the 
square-brackets notation of a system with the continuous definition of the system as follows: 

 
 

Notice that the two notations show the same thing, but the first one is typically easier to write, and it shows that 
the system in question is a discrete system. This book will use the square brackets to denote discrete systems by 
the sample number n, and parenthesis to denote continuous time functions. 
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System Metrics 
System Metrics 
When a system is being designed and analyzed, it doesn't make any sense to test the system with all manner of 
strange input functions, or to measure all sorts of arbitrary performance metrics. Instead, it is in everybody's best 
interest to test the system with a set of standard, simple, reference functions. Once the system is tested with the 
reference functions, there are a number of different metrics that we can use to determine the system performance. 

It is worth noting that the metrics presented in this chapter represent only a small number of possible metrics that 
can be used to evaluate a given system. This wikibook will present other useful metrics along the way, as their 
need becomes apparent. 

Standard Inputs 
There are a number of standard inputs that are considered simple 
enough and universal enough that they are considered when 
designing a system. These inputs are known as a unit step, a 
ramp, and a parabolic input. 

Unit Step  
A unit step function is defined piecewise as such:  

 

 
 

The unit step function is a highly important function, not only in control systems engineering, but also in 
signal processing, systems analysis, and all branches of engineering. If the unit step function is input to a 
system, the output of the system is known as the step response. The step response of a system is an 
important tool, and we will study step responses in detail in later chapters.  

Ramp  
A unit ramp is defined in terms of the unit step function, as such:  

 
  

It is important to note that the ramp function is simply the integral of the unit step function:  

 

 

This definition will come in handy when we learn about the Laplace Transform.  

Parabolic  
A unit parabolic input is similar to a ramp input: 

Note: 
All of the standard inputs are zero before 

time zero 

[Unit Step Function]

[Unit Ramp Function]
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Notice also that the unit parabolic input is equal to the integral of the ramp function:  

 

 

Again, this result will become important when we learn about the Laplace Transform.  

Also, sinusoidal and exponential functions are considered basic, but they are too difficult to use in initial analysis 
of a system. 

Steady State 
When a unit-step function is input to a system, the steady state value of that system is the output value at time 

. Since it is impractical (if not completely impossible) to wait till infinity to observe the system, 
approximations and mathematical calculations are used to determine the steady-state value of the system. 

Target Value 
The target output value is the value that our system attempts to obtain for a given output. This is not the same as 
the steady-state value, which is the actual value that the target does obtain. The target value is frequently referred 
to as the reference value, or the "reference function" of the system. In essence, this is the value that we want the 
system to produce. When we input a "5" into an elevator, we want the output (the final position of the elevator) to 
be the fifth floor. Pressing the "5" button is the reference input, and is the expected value that we want to obtain. 
If we press the "5" button, and the elevator goes to the third floor, then our elevator is poorly designed. 

Rise Time 
Rise time is the amount of time that it takes for the system response to reach the target value from an initial state 
of zero. Many texts on the subject define the rise time as being 80% of the total time it takes to rise between the 
initial position and the target value. This is because some systems never rise to 100% of the expected, target 
value, and therefore they would have an infinite rise-time. This book will specify which convention to use for 
each individual problem. 

Note that rise time is not the amount of time it takes to acheive steady-state, only the amount of time it takes to 
reach the desired target value for the first time. 

Percent Overshoot 
Underdamped systems frequently overshoot their target value initially. This initial surge is known as the 
"overshoot value". The ratio of the amount of overshoot to the target steady-state value of the system is known as 
the percent overshoot. Percent overshoot represents an overcompensation of the system, and can output 
dangerously large output signals that can damage a system. 

[Unit Parabolic Function]
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Example: Refrigerator 

Consider an ordinary household refrigerator. The refridgerator has cycles where it is on and when it is 
off. When the refrigerator is on, the coolant pump is running, and the temperature inside the refrigerator 
decreases. The temperature decreases to a much lower level then is required, and then the pump turns off. 

When the pump is off, the temperature slowly increases again as heat is absorbed into the refrigerator. 
When the temperature gets high enough, the pump turns back on. Because the pump cools down the 
refrigerator more then it needs to initially, we can say that it "overshoots" the target value by a certain 
specified amount. 

Another example concerning a refrigerator concerns the electrical demand of the heat pump when it first 
turns on. The pump is an inductive mechanical motor, and when the motor first activates, a special 
counter-acting force known as "back EMF" resists the motion of the motor, and causes the pump to draw 
more electricity until the motor reaches it's final speed. During the startup time for the pump, lights on 
the same electrical circuit as the refrigerator may dim slightly, as electricity is drawn away from the 
lamps, and into the pump. This initial draw of electricity is a good example of overshoot. 

Steady-State Error 
Sometimes a system might never achieve the desired steady state value, but instead will settle on an output value 
that is not desired. The difference between the steady-state output value to the reference input value at steady state 
is called the steady state error of the system. We will use the variable ess to denote the steady-state error of the 
system. 

Settling Time 
After the initial rise time of the system, some systems will oscillate and vibrate for an amount of time before the 
system output settles on the final value. The amount of time it takes to reach steady state after the initial rise time 
is known as the settling time. Notice that damped oscillating systems may never settle completely, so we will 
define settling time as being the amount of time for the system to reach, and stay in, a certain acceptable range. 

System Order 
The order of the system is defined by the highest exponent in the transfer function. In a proper system, the 
system order is defined as the degree of the denominator polynomial. 

Proper Systems 

A proper system is a system where the degree of the denominator is larger than or equal to the degree of the 
numerator polynomial. A strictly proper system is a system where the degree of the denominator polynomial is 
larger then (but never equal to) the degree of the numerator polynomial. 

It is important to note that only proper systems can be physically realized. In other words, a system that is not 
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proper cannot be built. It makes no sense to spend alot of time designing and analyzing imaginary systems. 

Example: System Order 

Find the order of this system: 

 

 

The highest exponent in the denominator is s2, so the system is order 2. Also, since the denominator is a 
higher degree then the numerator, this system is proper. 

in the above example, G(s) is a second-order transfer function because in the denominator one of the s variables 
has an exponent of 2. Second-order functions are the easiest to work with, and this book will focus on second-
order LTI systems. 

System Type 
Let's say that we have a transfer function that is in the following generalized form (known as pole-zero form): 

 

 
 

we call the parameter N the system type. Note that increased 
system type number correspond to larger numbers of poles at s = 
0. More poles at the origin generally have a beneficial effect on the 
system, but they increase the order of the system, and make it 
increasingly difficult to implement physically. Now, we will 
define a few terms that are commonly used when discussing system type. These new terms are Position Error, 
Velocity Error, and Acceleration Error. These names are throwbacks to physics terms where acceleration is the 
derivative of velocity, and velocity is the derivative of position. Note that none of these terms are meant to deal 
with movement, however. 

Position Error  
The position error, denoted by the position error constant . This is the amount of steady state error of 
the system when multiplied by a unit step input. We define the position error constant as follows:  

 
  

Where G(s) is the transfer function of our system.  

Velocity Error  
The velocity error is the amount of steady state error when the system is stimulated with a ramp input. We 
define the velocity error constant as such: 

[Pole-Zero Form]

Poles at the origin are called integrators, 
because they have the effect of 

performing integration on the input signal. 

[Position Error Constant]
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Acceleration Error  
The acceleration error is the amount of steady-state error when the system is stimulated with a parabolic 
input. We define the acceleration error constant to be:  

 
  

Now, this table will show breifly the relationship between the system type, the kind of input (step, ramp, 
parabolic), and the steady state error of the system: 

Z-Domain Type 

Likewise, we can show that the system order can be found from the following generalized transfer function in the 
Z domain: 

 

 

Where the constant N is the order of the digital system. Now, we will show how to find the various error constants 
in the Z-Domain: 

 

[Velocity Error Constant]

[Acceleration Error Constant]

Unit System Input
Type Au(t) Ar(t) Ap(t)

0

1

2

>2

[Z-Domain Error Constants]Error Constant Equation

Kp

Kv

Ka
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Visually 
Here is an image of the various system metrics, acting on a system in response to a step input: 
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System Modeling 
The Control Process 
When designing a system, or implementing a controller to augment an existing system, we need to follow some 
basic steps: 

1. Model the system mathematically  
2. Analyze the mathematical model  
3. Design system/controller  
4. Implement system/controller and test  

The vast majority of this book is going to be focused on (2), the analysis of the mathematical systems. This 
chapter alone will be devoted to a discussion of the mathematical modeling of the systems. 

External Description 
An external description of a system relates the system input to the system output without explicitly taking into 
account the internal workings of the system. The external description of a system is sometimes also referred to as 
the Input-Output Description of the system, because it only deals with the inputs and the outputs to the system. 

If the system can be represented by a mathematical function h(t, r), where t is the time that the output is observed, 
and r is the time that the input is applied. We can relate the system function h(t, r) to the input (x) and the output 
(y) through the use of an integral: 

 

 
 

This integral form holds for all linear systems, and every linear system can be described by such an equation. 

If a system is causal, then there is no output of the system before time r, and we can change the limits of the 
integration: 

 

 

Time-Invariant Systems 

If a system is time-invariant (and causal), we can rewrite the system description equation as follows: 

 

 

This equation is known as the convolution integral, and we will discuss it more in the next chapter. 

Every Linear Time-Invariant (LTI) system can be used with the Laplace Transform, a powerful tool that allows 

[General System Description]
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us to convert an equation from the time domain into the S-Domain, where many calculations are easier. Time-
variant systems cannot be used with the Laplace Transform. 

Internal Description 
If a system is linear and lumped, it can also be described using a system of equations known as state-space 
equations. In state space equations, we use the variable x to represent the internal state of the system. We then 
use u as the system input, and we continue to use y as the system output. We can write the state space equations as 
such: 

 
 

  

We will discuss the state space equations more when we get to the section on modern controls 

Complex Descriptions 
Systems which are LTI and Lumped can also be described using a combination of the state-space equations, and 
the Laplace Transform. If we take the Laplace Transform of the state equations that we listed above, we can get a 
set of functions known as the Transfer Matrix Functions. We will discuss these functions in a later chapter. 

Representations 
To recap, we will prepare a table with the various system properties, and the available methods for describing the 
system: 

We will discuss all these different types of system representation later in the book. 

Analysis 
Once a system is modeled using one of the representations listed above, the system needs to be analyszed. We can 
determine the system metrics, and then we can compare those metrics to our specification. If our system meets the
specifications, you are finished (congratulations). If the system does not meet the specifications (as is typically the 
case), then suitable controllers and compensators need to be designed and added to the system. 

Once the controllers and compensators have been designed, the job isn't finished: we need to analyze the new 
composite system to ensure that the controllers work properly. Also, we need to ensure that the systems are stable:
unstable systems can be dangerous. 

Properties State-Space
Equations

Laplace 
Transform

Transfer
Matrix

Linear, Time-Variant, Distributed no no no
Linear, Time-Variant, Lumped yes no no
Linear, Time-Invariant, Distributed no yes no
Linear, Time-Invariant, Lumped yes yes yes
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