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After reading this lesson, you will learn about 
 Need for preprocessing before quantization; 

 
Introduction 

In this module we shall discuss about a few aspects of analog to digital (A/D) 
conversion as relevant for the purpose of coding, multiplexing and transmission.  The 
basic principles of analog to digital conversion will not be discussed. Subsequently we 
will discuss about several lossy coding and compression techniques such as the pulse 
code modulation (PCM), differential pulse code modulation (DPCM), and delta 
modulation (DM).  The example of telephone grade speech signal having a narrow 
bandwidth of 3.1 kHz (from 300 Hz to 3.4 kHz) will be used extensively in this module. 
 
Need for Preprocessing Before Digital Conversion 

It is easy to appreciate that the electrical equivalent of human voice is summarily 
a random signal, Fig.3.10.1.  It is also well known that the bandwidth of an audible signal 
(voice, music etc.) is less than 20 KHz (typical frequency range is between 20 Hz and 
20KHz).  Interestingly, the typical bandwidth of about 20 KHz is not considered for 
designing a telephone communication system. Most of the voice signal energy is limited 
within 3.4 KHz.  While a small amount of energy beyond 3.4 KHz adds to the quality of 
voice, the two important features of a) message intelligibility and b) speaker recognition 
are retained when a voice signal is band limited to 3.4 KHz.  This band limited voice 
signal is commonly referred as ‘telephone grade speech signal’. 

 
 

 
                             
 
 
 
 
 
 

Fig. 3.10.1 Sketch of random speech signal vs. time 

time

Local mean (+ve)
volt

 
 
 A very popular ITU-T (International Telecommunication Union) standard 

specifies the bandwidth of telephone grade speech signal between 300 Hz and 3.4 kHz. 
The lower cut off frequency of 300 Hz has been chosen instead of 20 Hz for multiple 
practical reasons. The power line frequency (50Hz) is avoided.  Further the physical size 
and cost of signal processing elements such as transformer and capacitors are also 
suitable for the chosen lower cut-off frequency of 300 Hz. A very important purpose of 
squeezing the bandwidth is to allow a large number of speakers to communicate 
simultaneously through a telephone network while sharing costly trunk lines using the 
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principle of multiplexing.  A standard rate of sampling for telephone grade speech signal 
of one speaker is 8-Kilo samples/ sec (Ksps).  

 
Usually, an A/D converter quantizes an input signal properly if the signal is 

within a specified range.  As speech is also a random signal, there is always a possibility 
that the amplitude of speech signal at the input of a quantizer goes beyond this range. If 
no protection is taken for this problem and if the probability of such event is not 
negligible, even a good quantizer will lead to unacceptably distorted version of the signal.  
A possible remedy of this problem is to (a) study and assess the variance of random 
speech signal amplitude and (b) to adjust the signal variance within a reasonable limit. 
This is often ensured by using a variance estimation unit and a variable gain amplifier, 
Fig. 3.10.2.  Another preprocessing which may be necessary is of DC adjustment of the 
input speech signal. To explain this point, let us assume that the input range of a 
quantizer is ‘±V’ volts.  This quantizer expects an input signal whose DC (i.e average) 
value is zero.  However if the input signal has an unwanted dc bias ( x  in Fig 3.10.2) this 
also should be removed.  For precise quantization, a mean estimation unit can be used to 
estimate a local mean and subtract it from the input signal. If both the processes of mean 
removal and variance normalization are to be adopted, the mean of the signal should be 
adjusted first.  
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Fig. 3.10.2 Scheme for mean removal and variance normalization 
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After reading this lesson, you will learn about 
 

 Principle of Pulse Code Modulation; 
 Signal to Quantization Noise Ratio for uniform quantizaton; 

 
A schematic diagram for Pulse Code Modulation is shown in Fig 3.11.1. The 

analog voice input is assumed to have zero mean and suitable variance such that the 
signal samples at the input of A/D converter lie satisfactorily within the permitted single 
range. As discussed earlier, the signal is band limited to 3.4 KHz by the low pass filter.  
 
 
 

 
 
 
 
 
                 

  
 
 
 

Fig. 3.11.1   Schematic diagram of a PCM coder – decoder 
 
Let x (t) denote the filtered telephone-grade speech signal to be coded. The 

process of analog to digital conversion primarily involves three operations: (a) Sampling 
of x (t), (b) Quantization (i.e. approximation) of the discrete time samples, x (kTs) and (c) 
Suitable encoding of the quantized time samples xq (kTs). Ts indicates the sampling 
interval where Rs = 1/Ts is the sampling rate (samples /sec). A standard sampling rate for 
speech signal, band limited to 3.4 kHz, is 8 Kilo-samples per second (Ts = 125μ sec), 
thus, obeying Nyquist’s sampling theorem. We assume instantaneous sampling for our 
discussion. The encoder in Fig 3.11.1 generates a group of bits representing one 
quantized sample. A parallel–to–serial (P/S) converter is optionally used if a serial bit 
stream is desired at the output of the PCM coder. The PCM coded bit stream may be 
taken for further digital signal processing and modulation for the purpose of transmission.  

 
The PCM decoder at the receiver expects a serial or parallel bit-stream at its input 

so that it can decode the respective groups of bits (as per the encoding operation) to 
generate quantized sample sequence [x'q (kTs)]. Following Nyquist’s sampling theorem 
for band limited signals, the low pass filter produces a close replica ( )x̂ t  of the original 
speech signal x (t). 

 
If we consider the process of sampling to be ideal (i.e. instantaneous sampling) 

and if we assume that the same bit-stream as generated by PCM encoder is available at 
PCM decoder, we should still expect ( )x̂ t  to be somewhat different from x (t). This is 
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solely because of the process of quantization. As indicated, quantization is an 
approximation process and thus, causes some distortion in the reconstructed analog 
signal. We say that quantization contributes to “noise”. The issue of quantization noise, 
its characterization and techniques for restricting it within an acceptable level are of 
importance in the design of high quality signal coding and transmission system. We focus 
a bit more on a performance metric called SQNR (Signal to Quantization Noise power 
Ratio) for a PCM codec. For simplicity, we consider uniform quantization process. The 
input-output characteristic for a uniform quantizer is shown in Fig 3.11.2(a). The input 
signal range (± V) of the quantizer has been divided in eight equal intervals. The width of 
each interval, δ, is known as the step size. While the amplitude of a time sample x (kTs) 
may be any real number between +V and –V, the quantizer presents only one of the 
allowed eight values (±δ, ±3δ/2, …) depending on the proximity of x (kTs) to these 
levels. 

 
 

 
 

Fig 3.11.2(a) Linear or uniform quantizer 
 
 
 
 
The quantizer of Fig 3.11.2(a) is known as “mid-riser” type. For such a mid-riser 

quantizer, a slightly positive and a slightly negative values of the input signal will have 
different levels at output. This may be a problem when the speech signal is not present 
but small noise is present at the input of the quantizer. To avoid such a random 
fluctuation at the output of the quantizer, the “mid-tread” type uniform quantizer [Fig 
3.11.2(b)] may be used.       
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Fig 3.11.2(b) Mid-tread type uniform quantizer characteristics 
 
SQNR for uniform quantizer 
 In Fig.3.11.1 x(kTs) represents a discrete time (t = kTs) continuous amplitude 
sample of x(t) and xq(kTs) represents the corresponding quantized discrete amplitude 
value. Let ek represents the error in quantization of the kth sample i.e. 

( ) (k q s se x kT x kT= − )          3.11.1 
Let, 
 M = Number of permissible levels at the quantizer output. 
 N = Number of bits used to represent each sample. 
 ±V = Permissible range of the input signal x (t). 
Hence, 
 M=2N   and, 
 M.δ ≅ 2.V  [Considering large M and a mid-riser type quantizer]  
 
 Let us consider a small amplitude interval dx such that the probability density 
function (pdf) of x(t) within this interval is p(x). So, p(x)dx is the probability that x(t) lies 

in the range ( )
2
dxx −  and (

2
dxx + ) . Now, an expression for the mean square quantization 

error 2e  can be written as: 
 

1 2

1 2

/ 2 / 2
2 2

1
/ 2 / 2

( )( ) ( )( ) ....
x x

x x

e p x x x dx p x x x dx2
2

δ δ

δ δ

+ +

− −

= − + −∫ ∫ +       3.11.2 

 
For large M and small δ we may fairly assume that p(x) is constant within an interval, i.e. 
 p(x)  = p1 in the 1st interval, p(x) = p2 in the 2nd interval, …., p(x) = pk in the kth interval.  
 
Therefore, the previous equation can be written as  

/ 2
2 2

1 2
/ 2

( .....)e p p y d
δ

δ−

= + + ∫ y  

 Where, y = x-xk for all ‘k’.  
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So, 

 

3
2

1 2

2

1 2

( .....)
12

[( .....) ]
12

e p p

p p

δ

δδ

= + +

= + +
 

Now, note that (p1 + p2 + … + pk + …)δ = 1.0  
2

2

12
e δ

∴ =  

 
The above mean square error represents power associated with the random error 

signal. For convenience, we will also indicate it as NQ.  
 

Calculation of Signal Power (Si)  
 After getting an estimate of quantization noise power as above, we now have to 
find the signal power. In general, the signal power can be assessed if the signal statistics 
(such as the amplitude distribution probability) is known. The power associated with x (t) 
can be expressed as  

                          ( ) ( ) ( )2 2
V

i
V

t t p xS x x
+

−

= = ∫ dx  

where p (x) is the pdf of x (t). In absence of any specific amplitude distribution it is 
common to assume that the amplitude of signal x (t) is uniformly distributed between ±V. 
 
In this case, it is easy to see that  

             ( )2
i tS x= ( )2 1

2

V

V

t dx
Vx

+

−

= ∫
3

3.2

V

V

x
V

+

−

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

2

3
V= ( )2

12

Mδ
=  

 
Now the SNR can be expressed as, 

                                             

2

2
3

12

i

Q

V
S
N δ

=

( )2

2
12

12

Mδ

δ
= 2M=  

 
It may be noted from the above expression that this ratio can be increased by increasing 
the number of quantizer levels N. 

 
Also note that Si is the power of x (t) at input of the sampler and hence, may not 

represent the SQNR at the output of the low pass filter in PCM decoder. However, for 
large N, small δ and ideal and smooth filtering (e.g. Nyquist filtering) at the PCM 
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decoder, the power So of desired signal at the output of the PCM decoder can be assumed 
to be almost the same as Si i.e.,  

       o iS S
 
With this justification the SQNR at the output of a PCM codec, can be expressed as, 

                                      o

Q
SQNR S

N
= 2M ( )2

2N= 4N=  

and in dB,                                 

dB

o

Q

S
N 10

10 6.02log o

Q
NdBS

N
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

 
A few observations 

 
(a) Note that if actual signal excursion range is less than  ± V, So / No < 6.02NdB. 
 
(b) If one quantized sample is represented by 8 bits after encoding i.e., N = 8, 

48 . SQNR dB
 
(c) If the amplitude distribution of x (t) is not uniform, then the above expression 

may not be applicable.   
 
 
 
Problems 
 
Q3.11.1) If a sinusoid of peak amplitude 1.0V and of frequency 500Hz is sampled at 2 

k-sample /sec and quantized by a linear quantizer, determine SQNR in dB 
when each sample is represented by 6 bit. 

 
Q3.11.2) How much is the improvement in SQNR of problem 3.11.1 if each sample is 

represented by 10 bits? 
 

Q3.11.3) What happens to SQNR of problem 3.11.2 if each sampling rate is changed to 
1.5 k-samples/ sec? 
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After reading this lesson, you will learn about: 
 

 Reason for logarithmic PCM; 
 A-law and μ–law Companding; 

 
In a linear or uniform quantizer, as discussed earlier, the quantization error in the 

k-th sample is   
                        ek = x (t) – xq (kTs)       3.12.1 
and   the maximum error magnitude in a quantized sample is,          

                           
2kMax e δ

=        3.12.2 

So, if x (t) itself is small in amplitude and such small amplitudes are more probable in the 
input signal than amplitudes closer to ‘± V’, it may be guessed that the quantization noise 
of such an input signal will be significant compared to the power of x (t). This implies 
that SQNR of usually low signal will be poor and unacceptable. In a practical PCM 
codec, it is often desired to design the quantizer such that the SQNR is almost 
independent of the amplitude distribution of the analog input signal x (t). 
 
           This is achieved by using a non-uniform quantizer. A non-uniform quantizer 
ensures smaller quantization error for small amplitude of the input signal and relatively 
larger step size when the input signal amplitude is large. The transfer characteristic of a 
non – uniform quantizer has been shown in Fig 3.12.1. A non-uniform quantizer can be 
considered to be equivalent to an amplitude pre-distortion process [denoted by y = c (x) 
in Fig 3.12.2] followed by a uniform quantizer with a fixed step size ‘δ’. We now briefly 
discuss about the characteristics of this pre-distortion or ‘compression’ function y = c (x). 
 

 
 

 
Fig 3.12.1 Transfer characteristic of a non-uniform quantizer 
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Fig. 3.12.2  An equivalent form of a non-uniform quantizer 
 

Mathematically, c (x) should be a monotonically increasing function of ‘x’ with 
odd symmetry Fig 3.12.3. The monotonic property ensures that c-1 (x) exists over the 
range of ‘x(t)’ and is unique with respect to c (x) i.e.,  ( ) ( )1 1c x c x−× = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.12.3  A desired transfer characteristic for non-linear quantization process 

 
  Remember that the operation of c-1 (x) is necessary in the PCM decoder to get 
back the original signal undistorted. The property of odd symmetry i.e., c (-x) = - c (x) 
simply takes care of the full range ‘± V’ of x (t). The range ‘± V’ of x (t) further implies 
the following: 
                        c (x) = + V ,         for x = +V;  
                                = 0 ,             for x = 0; 
                                = - V ,          for x = - V;      3.12.3 
 
 Let the k-th step size of the equivalent non-linear quantizer be ‘δk’ and the 
number of signal intervals be ‘M’. Further let the k-th representation level after 
quantization when the input signal lies between ‘xk’ and ‘xk+1’ be ‘yk’ where  

                                      ( 1
1
2 k kky )x x += +  , k = 0,1,…..,(M-1)   3.12.4 

 
 
The corresponding quantization error ‘ek’ is  
                                             ek = x – yk ;     xk < x ≤ xk+1  
 

Non-uniform 
Quantizer  

x (t) Pre-distortion  
y = c (x) 
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Now observe from Fig 3.12.3 that ‘δk’ should be small if  ‘ ( )dc x
dx ’  i.e., the slope of   

y = c (x) is large.  
 
In view of this, let us make the following simple approximation on c (x):  

                                
( ) 2 1

k

dc x V
dx M δ

,               k = 0,1,……,(M-1)   3.12.5 

and                         1k kx xkδ += −  ,                     k = 0,1,…….,(M-1) 

Note that, ‘ 2V
M ’ is the fixed step size of the uniform quantizer Fig. 3.12.2. 

 
 Let us now assume that the input signal is zero mean and its pdf  p(x) is 
symmetric about zero. Further for large number of intervals we may assume that in each 
interval Ik, k = 0,1,…..,(M-1), the p(x) is constant. So if the input signal x (t) is between 
xk and xk+1, i.e., 
xk < x  ≤ xk+1 , 
                        ( ) ( )k

p x p y  

 
So, the probability that x lies in the k-th interval Ik,  
                                  ( ) ( )1< k r k kk

x pp x xI P kky δ+= ≤ =    3.12.6 

where,   ( )
1

1
0

< 1
M

r k kxx xP
−

+≤ =∑

Now, the mean square quantization error 2e  can be determined as follows: 

( ) ( )
22

V

V

p x dxkx ye
+

−

= −∫  

( ) ( )
11 2

0

k

k

M

k
k

x
p dxk

x
x yy

+−

=
= −∑ ∫  

( )
11 2

0

k

k

M
k

k k

x
dxk

x

p x yδ
+−

=
= −∑ ∫  

( ) (
1 3 3

0

1
13

M
k

k k
k kk k

p )y yx xδ
−

=

⎡ ⎤
= −⎢ ⎥+⎣ ⎦

− −∑  

( ) ( )
3 3

1

0

1
1 13

1 1
2 2

M
k

k k
k k k k k k

p
x x x x x xδ

−

=

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= −⎨ ⎬+ +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎡ ⎤ ⎡− + − +∑ ⎢ ⎥ ⎢⎣ ⎦ ⎣
1+
⎤
⎥⎦
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1 1
3

0 0

1 1 1
3 4 12

M M
k

k k
k kk

p p 2
kδ δδ

− −

= =
= =∑ ∑        3.12.7 

 
Now substituting  

                                      
( ) 1

2
k

V
M

dc x
dxδ

−
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

in the above expression, we get an approximate expression for mean square error as 
 

                                      
( ) 2

2 1
2

2
03

M

k
k

dc xV pe dxM

−
−

=
=

⎡ ⎤
∑ ⎢ ⎥

⎣ ⎦
               3.12.8 

 
The above expression implies that the mean square error due to non-uniform quantization 
can be expressed in terms of the continuous variable x, -V< x < +V, and having a pdf      
p (x) as below: 

                                  ( )
( ) 2

2
2

23

V

V

p x d
dc xVe dxM

−
+

−

x
⎡ ⎤

∫ ⎢ ⎥
⎣ ⎦

           3.12.9 

 
 
 
Now, we can have an expression of SQNR for a non-uniform quantizer as: 

                                  
( )

( )
( )

2
2

2
3

V

V

V

V

p x dx
SQNR 2

p x d

xM
V dc x

dx

+

−
−

+

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫

x
⎡ ⎤

∫ ⎢ ⎥
⎣ ⎦

   3.12.10 

 
The above expression is important as it gives a clue to the desired form of the 

compression function y = c(x) such that the SQNR can be made largely independent of 
the pdf of x (t). 
 
It is easy to see that a desired condition is: 

                                    ( )dc x K
dx x=   where –V < x < +V and K is a positive constant. 

        i.e.,                  ( ) ln xc x V K V
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

        for x > 0     3.12.11 

       and                  c (x) = - c (x)       3.12.12 
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Note: 
 Let us observe that c (x) → ± ∞ as x → 0 from other side. Hence the above c(x) is not 
realizable in practice. Further, as stated earlier, the compression function c (x) must pass 
through the origin, i.e., c (x) = 0, for x = 0. This requirement is forced in a compression 
function in practical systems.  
 
There are two popular standards for non-linear quantization known as  

(a) The µ - law companding  
(b) The A – law companding. 
 

The µ - law has been popular in the US, Japan, Canada and a few other countries while 
the A - law is largely followed in Europe and most other countries, including India, 
adopting ITU-T standards. 
 
        The compression function c (x) for µ - law companding is (Fig. 3.12.4 and Fig. 
3.12.5): 

                                      
( )

( )

ln 1

ln 1

x
Vc x

V

μ

μ

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
+

 ,      0
x
V≤ ≤1.0    3.12.13 

‘µ’ is a constant here. The typical value of  µ lies between 0 and 255. µ = 0 corresponds 
to linear quantization. 

 
 

Fig. 3.12.4 μ-law companding characteristics(mu = 100) 
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  Fig. 3.12.5 μ-law companding characteristics (mu = 0, 100, 255) 

 
 
The compression function c (x) for A - law companding is (Fig. 3.12.6):  

                                        
( )

1 ln

x
Ac x V

V A=
+

     ,        10
x
V A≤ ≤  

                                                   
1 ln

1 ln

x
A V

A

⎛ ⎞
+ ⎜ ⎟

⎝= ⎠
+

  ,        1 1.0
x

A V≤ ≤    3.12.14 

 
‘A’ is a constant here and the typical value used in practical systems is 87.5. 
 

 
 

Fig. 3.12.6 A-law companding characteristics (A = 0, 87.5, 100, 255) 
 
             For telephone grade speech signal with 8-bits per sample and 8-Kilo samples per 
second, a typical SQNR of 38.4 dB is achieved in practice. 
 
            As approximately logarithmic compression function is used for linear 
quantization, a PCM scheme with non-uniform quantization scheme is also referred as  
“Log PCM” or “Logarithmic PCM” scheme. 
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Problems 
 
Q3.12.1) Consider Eq. 3.12.13 and sketch the compression of c (x) for µ = 50 and V = 

2.0V 
 
Q3.12.2) Sketch the compression function c (x) for A - law companding  (Eq.3.12.14) 

when V = 1V and A = 50. 
 
Q3.12.3) Comment on the effectiveness of a non-linear quantizer when the peak 

amplitude of a signal is known to be considerably smaller  than the maximum 
permissible voltage V. 
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After reading this lesson, you will learn about 
 

 Principles of DPCM; 
 DPCM modulation and de-modulation; 
 Calculation of SQNR; 
 One tap predictor;   

 
The standard sampling rate for pulse code modulation (PCM) of telephone grade 

speech signal is fs = 8 Kilo samples per sec with a sampling interval of 125 μ sec. 
Samples of this band limited speech signal are usually correlated as amplitude of speech 
signal does not change much within 125 μ sec. A typical auto correlation function R (τ ) 
for speech samples at the rate 8 Kilo samples per sec is shown in Fig 3.13.1. R (τ = 125 μ 
sec) is usually between 0.79 and 0.87. This aspect of speech signal is exploited in 
differential pulse code modulation (DPCM) technique. A schematic diagram for the basic 
DPCM modulator is shown in Fig 3.13.2. Note that a predictor block, a summing unit 
and a subtraction unit have been strategically added to the chain of blocks of PCM coder 
instead of feeding the sampler output x (kTs) directly to a linear quantizer. An error 
sample ep (kTs) is fed. 
 
 The error sample is given by the following expression: 
                                          ( ) ( ) ( )p s sx xe kT kT kT= − s     3.13.1 

( )sx kT  is a predicted value for  ( )sx kT  and is supposed to be close to ( )sx kT  such 

that ( )p se kT  is very small in magnitude. ( )p se kT  is called as the ‘prediction error 

for the n-th sample’. 
 
 
 
  
 
 
 
 
          
   

Rs(τ) 

 
 
 
 
Fig. 3.13.1 Typical normalized auto-correlation coefficient for speech signal  
 
 
 
 

0    Ts  3 Ts   

Rs(τ)= Correlation 
coefficient 
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+
+

+
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Fig. 3.13.2  Schematic diagram of a DPCM modulator 
 
 If we assume a final enclosed bit rate of 64kbps as of a PCM coder, we envisage 
smaller step size for the linear quantizer compared to the step size of an equivalent PCM 
quantizer. As a result, it should be possible to achieve higher SQNR for DPCM codec 
delivering bits at the same rate as that of a PCM codec. 
 
             There is another possibility of decreasing the coded bit rate compared to a PCM 
system if an SQNR as achievable by a PCM codec with linear equalizer is sufficient. If 
the predictor output ( )sx kT  can be ensured sufficiently close to ( )sx kT  then we can 

simply encode the quantizer output sample v(kTs) in less than 8 bits. For example, if we 
choose to encode each of v(kTs) by 6 bits, we achieve a serial bit rate of 48 kbps, which is 
considerably less than 64 Kbps. This is an important feature of DPCM, especially when 
the coded speech signal will be transmitted through wireless propagation channels. 
 
             We will now develop a simple analytical structure for a DPCM encoding scheme 
to bring out the role that nay be played by the prediction unit. 
 As noted earlier,  
 

( )p se kT  = k-th input to quantizer = ( ) ( )s sx xkT kT−  

( )sx kT   = prediction of the k-th input sample ( )sx kT . 

( )qe kT s

)⎤⎦

 = quantizer output for k-th prediction error. 

              = , where c[] indicates the transfer characteristic of the quantizer (p sc e kT⎡
⎣
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If ( )sq kT  indicates the quantization error for the k-th sample, it is easy to see that 

                                                   ( ) ( ) ( )q s p s qe kT e kT kT= + s

)

          3.13.2 

 
Further the input ( su kT  to the predictor is, 

                          ( ) ( ) ( )s s q su x ( ) ( ) ( )kT kT e kT= + s p s sx qkT e kT kT= + +                          

                                        ( ) ( )s sx qkT kT= +      3.13.3 

 
This equation shows that ( )su kT  is indeed a quantized version of ( )sx kT . For a good 

prediction ( )p se kT  will usually be small compared to ( )sx kT  and ( )sq kT  in turn 

will be very small compared to. Hence, the predictor unit should be so designed that 
variance of ( )sq kT  < variance of ( )p se kT  << variance of ( )sx kT . 

 
                A block schematic diagram of a DPCM demodulator is shown in Fig 3.13.3. 
The scheme is straightforward and it tries to estimate ( )su kT  using a predictor unit 

identical to the one used in the modulator. We have already observed that ( )su kT  is 

very close to ( )sx kT  within a small quantization error of ( )sq kT . The analog speech 

signal is obtained by passing the samples ( )su kT  through an appropriate low pass filter. 

This low pass filter should have a 3 dB cut off frequency at 3.4kHz. 
 
 
 
  
 
 
                                                                                        

o/p 

  
 

 
 
 
 
                  
 
Fig. 3.13.3  Schematic diagram of a DPCM demodulator; note that the demodulator is 
very similar to a portion of the modulator  

Decoder Σ Low pass 
filter 

Predictor 

)(ˆ snTb +
Analog 
Output 

i/p 

Demodulator output 
ˆ( ) 

+

sv nT ˆ( )su nT ˆ( )x t

ˆ( )su nT  x ( )snT
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Calculation of SQNR for DPCM 
 
The expression for signal to quantization noise power ratio for DPCM coding is: 

( )
( )

( )( ) .
( ) ( )

s

s

p ss

p s s

Variance of x kTSQNR
Variance of q kT

Variance of e kTVariance of x kT
Variance of e kT Variance of q kT

=

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
As in PCM coding, we are assuming instantaneous sampling and ideal low pass filtering. 
The first term in the above expression is the ‘predictor gain (Gp)’.  This gain visibly 
increases for better prediction, i.e., smaller variance of ep(kTs).  The second term, SNRp is 
a property of the quantizer.  Usually, a linear or uniform quantizer is used for simplicity 
in a DPCM codec.  Good and efficient design of the predictor plays a crucial role in 
enhancing quality of signal or effectively reducing the necessary bit rate for transmission.  
In the following we shall briefly take up the example of a single-tap predictor. 
 
Single-Tap Prediction 

 
A single-tap predictor predicts the next input example x(kTs) from the immediate 

previous input sample x([k-1]Ts). 
 
Let,  ˆ ˆ( ) ( 1sx kT x k k= − )  = the k-th predicted sample, given the (k-1)th input sample 

                    . ( 1 1)a u k k= − −  

Here, ‘a’ is known as the prediction co-efficient and ( 1 1u k k )− −  is the (k-1)-th input to 
the predictor given the (k-1)-th input speech sample, i.e., x(k-1). 
 
Now the k-th prediction error sample at the input of the quantizer may be expressed as 

( ) (p s pe kT e k≡ )  

ˆ( ) ( 1)x k x k k= − −  

( ) . ( 1 1)x k a u k k= − − −         3.13.4 

 
The mean square error or variance of this prediction error samples is the statistical 
expectation of e2

p(k). 
 
Now, 

2 2[ ( )] [{ ( ) . ( 1 1)} ]pE e k E x k a u k k= − − −  

                 2[ ( ). ( ) 2. . ( ). ( 1 1) . ( 1 1). ( 1 1)]E x k x k a x k u k k a u k k u k k= − − − + − − − −  

                 2[ ( ). ( ) 2 [ ( ). ( 1 1)] . [ ( 1 1). ( 1 1)]E x k x k aE x k u k k a E u k k u k k= − − − + − − − −  

           3.13.5 

mywbut.com

23



Let us note that E[x(k).x(k)]=R(0). Where ( ( )R τ  indicates the autocorrelation coefficient. 
For the second term, let us assume that ( 1 1u k k )− −  is an unbiased estimate of x(k-1) 

and that ( 1 1u k k− − )  is a satisfactorily close estimate of x(k-1), so that we can use the 
following approximation: 
 [ ( ). ( 1 1)] [ ( ). ( 1)]E x k u k k E x k x k− − −  
  ( 1. ) (1),sR T R sayτ= = ≡  
The third term in the expanded form of E[e2

p(k)] can easily be identified as: 
2. [ ( 1 1). ( 1 1)]a E u k k u k k− − − −   2 2. ( 0) . (0)a R a Rτ= = =

2 2[ ( )] (0) 2. . (1) (0pE e k R a R a R )∴ = − +  

                      2(1)(0)[1 2 . ]
(0)

RR a
R

= − + a       3.13.6 

 
The above expression shows that the mean square error or variance of the prediction error 
can be minimized if a = R(1)/R(0). 
 
 
 
Problems 
 
Q3.13.1) Is there any justification for DPCM, if the samples of a signal are known to be 

uncorrelated with each other? 
 
Q3.13.2) Determine the value of prediction co-efficient for one tap prediction unit if 

R(0) = 1.0 and R(1) = 0.9. 
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Delta Modulation (DM) 
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After reading this lesson, you will learn about 
 Principles and features of Delta Modulation; 
 Advantages and limitations of Delta Modulation; 
 Slope overload distortion; 
 Granular Noise; 
 Condition for avoiding slope overloading; 

 
 If the sampling interval ‘Ts’ in DPCM is reduced considerably, i.e. if we sample a 
band limited signal at a rate much faster than the Nyquist sampling rate, the adjacent 
samples should have higher correlation (Fig. 3.14.1). The sample-to-sample amplitude 
difference will usually be very small. So, one may even think of only 1-bit quantization 
of the difference signal. The principle of Delta Modulation (DM) is based on this 
premise. Delta modulation is also viewed as a 1-bit DPCM scheme.  The 1-bit quantizer 
is equivalent to a two-level comparator (also called as a hard limiter). Fig. 3.14.2 shows 
the schematic arrangement for generating a delta-modulated signal. Note that, 
 

ˆ( ) ( ) ( )s s se kT x kT x kT= −   3.14.1 
   ( ) ([ 1] )s sx kT u k T= − −   3.14.2 
 
 
 
 
 

Rxx(τ) 
 
 
 
 
 
 
 
  

.87
.89

TTs’ s

Fig. 3.14.1 The correlation increases when the sampling interval is reduced 
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Fig. 3.14.2 Block diagram of a delta modulator 
 
Some interesting features of Delta Modulation 

• No effective prediction unit – the prediction unit of a DPCM coder (Fig. 3.13.2) is 
eliminated and replaced by a single-unit delay element. 

•  A 1-bit quantizer with two levels is used. The quantizer output simply indicates 
whether the present input sample x(kTs) is more or less compared to its 
accumulated approximation )(ˆ skTx . 

• Output )(ˆ skTx of the delay unit changes in small steps. 
• The accumulator unit goes on adding the quantizer output with the previous 

accumulated version )(ˆ skTx . 
• u(kTs), is an approximate version of x(kTs). 
• Performance of the Delta Modulation scheme is dependent on the sampling rate. 

Most of the above comments are acceptable only when two consecutive input 
samples are very close to each other. 

           ■ 
Now, referring back to Fig. 3.14.2, we see that,  

 
ˆ( ) ( ) { ([ 1] ) ([ 1] )}s s se kT x kT x k T v k T= − − + − s

]

     3.14.3 
Further, 

 ( ) ( ) . [ ( )s q s sv kT e kT s sign e kT= =      3.14.4 

Here, ‘s’ is half of the step-size δ as indicated in Fig. 3.14.3.  
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 +s

-s 

δ = 2s
 
 
 
 
 
 
 
 
Fig. 3.14.3 This diagram indicates the output levels of 1-bit quantizer. Note that if δ is the 

step size, the  two output levels are ± s  
 
Now, assuming zero initial condition of the accumulator, it is easy to see that 

1
( ) . [ ( )

k
]s s

j
u kT s sign e jT

=
= ∑  

1
( ) (

k
)s s

j
u kT v jT

=
= ∑                         3.14.5 

Further,  
1

1
ˆ( ) ([ 1] ) (

k
)s s

j
sx kT u k T v jT

−

=
= − = ∑    3.14.6 

Eq. 3.14.6 shows that  is essentially an accumulated version of the quantizer 
output for the error signal e .  also gives a clue to the demodulator structure 
for DM. Fig. 3.14.4 shows a scheme for demodulation. The input to the demodulator is a 
binary sequence and the demodulator normally starts with no prior information about the 
incoming sequence. 

)(ˆ skTx
)( skT )(ˆ skTx

 
 
 
 
 
 
 
                                                                   
   

Σ LPF 
3.4 KHZ.

Delay 
‘Ts’

  
Fig. 3.14.4  Demodulator structure for DM 
 
 Now, let us recollect from our discussion on DPCM in the previous lesson ( Eq. 
3.13.3) that, u(kTs) closely represents the input signal with small quantization error 
q(kTs), i.e.    

( ) ( ) ( )s su kT x kT q kT= + s         3.14.7 
 

Demodulator 
output 

( )sx kT
ˆ( )

 
su kT

ˆ( )  + sv kT

+ 
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Next, from the close loop including the delay-element in the accumulation unit in the 
Delta modulator structure, we can write 
 

ˆ([ 1] ) ( ) ( ) ( ) ([ 1] ) ([ 1] )s s s su k T x kTs x kT e kT x k T q k T− = = − = − + − s

)

  3.14.8 
 
 
Hence, we may express the error signal as,  
 

( ) { ( ) ([ 1] )} ([ 1]s s se kT x kT x k T q k T= − − − − s    3.14.9 
 
 
That is, the error signal is the difference of two consecutive samples at the input except 
the quantization error (when quantization error is small). 
 
 

 

Advantages of a Delta Modulator over DPCM 
a) As one sample of x(kTs) is represented by only one bit after delta modulation, 

no elaborate word-level synchronization is necessary at the input of the 
demodulator. This reduces hardware complexity compared to a PCM or 
DPCM demodulator. Bit-timing synchronization is, however, necessary if the 
demodulator in implemented digitally.  

 
b) Overall complexity of a delta modulator-demodulator is less compared to 

DPCM as the predictor unit is absent in DM. 
 
However DM also suffers from a few limitations such as the following: 
 

a) Slope over load distortion: If the input signal amplitude changes fast, the step-
by-step accumulation process may not catch up with the rate of change (see the 
sketch in Fig. 3.14.5). This happens initially when the demodulator starts 
operation from cold-start but is usually of negligible effect for speech. However, 
if this phenomenon occurs frequently (which indirectly implies smaller value of 
auto-correlation co-efficient Rxx(τ)  over a short time interval) the quality of the 
received signal suffers. The received signal is said to suffer from slope-overload 
distortion. An intuitive remedy for this problem is to increase the step-size δ but 
that approach has another serious lacuna as noted in b).  
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 Slope over l

distortion 
oad 

          
 
 
 
 
 

         
 
 
Fig. 3.14.5 A sketch indicating slope-overload problem. The horizontal axis represents 
time. The continuous line represents the analog input signal, before sampling and the 
stair-case represents the output of the delay element.  )(ˆ skTx

 
b)  Granular noise: If the step-size is made arbitrarily large to avoid slope-overload 

distortion, it may lead to ‘granular noise’. Imagine that the input speech signal is 
fluctuating but very close to zero over limited time duration. This may happen due 
to pauses between sentences or else. During such moments, our delta modulator is 
likely to produce a fairly long sequence of 101010…., reflecting that the 
accumulator output is close but alternating around the input signal. This 
phenomenon is manifested at the output of the delta demodulator as a small but 
perceptible noisy background. This is known as ‘granular noise’. An expert 
listener can recognize the crackling sound. This noise should be kept well within a 
tolerable limit while deciding the step-size. Larger step-size increases the granular 
noise while smaller step size increases the degree of slope-overload distortion. In 
the first level of design, more care is given to avoid the slope-overload distortion.  
We will briefly discuss about this approach while keeping the step-size fixed. A 
more efficient approach of adapting the step-size, leading to Adaptive Delta 
Modulation (ADM) , is excluded. 

 
 
Condition for avoiding slope overload: From Fig. 3.14.3 we may observe that if an 
input signal changes more than half of the step size (i.e. by ‘s’) within a sampling 
interval, there will be slope-overload distortion. So, the desired limiting condition on the 
input signal x(t) for avoiding slope-overloading is,  

 max
( )

s

dx t s
dt T

≤                 3.14.10 
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Quantization Noise Power  
Let us consider a sinusoid representing a narrow band signal ( ) cos(2 )mx t a ftπ=  where 
‘f’ represents the maximum frequency of the signal and ‘am ‘ its peak amplitude. There 
will be no slope-overload error if 

2 m
s

s a f
T

π≥ or   
2m

s

sa
fTπ

≤  

The above condition effectively limits the power of x(t). The maximum allowable power 

of x(t) = Pmax =
2 2

2 2 22 8
m

s

a s
f Tπ

= . 

Once the slope overload distortion has been taken care of, one can find an estimate of 
SQNRmax. Assuming uniform quantization noise between +s and –s, the quantization 
noise power is 

2 24
12 3Q
s sN = =  

Let us now recollect that the sampling frequency fs = 1/Ts is much greater than ‘f’ . The 
granular noise due to the quantizer can be approximated to be of uniform power spectral 
density over a frequency band upto fs (Fig. 3.14.6). The low pass filter at the output end 
of the delta demodulator is designed as per the bandwidth of x(t) and much of the 
quantization noise power is filtered off. Hence, we may write, 

the in-band quantization noise power ≈ . Q
s

f N
f

 

Therefore, SQNRmax=  (Maximum signal power) / (In-band quantization noise power) 

 3
2

3( ).( )
8

sf
fπ

=  

The above expression indicates that we can expect an improvement of about 9dB by 
doubling the sampling rate and it is not a very impressive feature when compared with a 
PCM scheme. Typically, when the permissible data rate after quantization and coding of 
speech signal is more than 48 Kbps, PCM offers better SQNR compared to linear DM.  
 
 
 

 f

In- band noise: It is 
uniform up to 1/Ts  

frequency 

Noise  
Power f = 1/Ts 

 
 
 
 
 
 
 
 
 
Fig. 3.14.6 In-band noise power at the output of the low pass filter in a delta 
demodulator is shown by the shaded region 
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Problems 
 
Q3.14.1) Comment if a delta modulator can also be called as a 1-bit DPCM scheme. 

 
Q3.14.2) Mention two differences between DPCM and Delta Modulator 
 
Q3.14.3) Suggest a solution for controlling the granular noise at the output of a delta 

modulator. 
 
Q3.14.4) Let x(t) = 2 cos (2π × 100t. If this signal is sampled at 1 KHz for delta 

modulator, what is the maximum achievable SQNR in dB? 
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