Chapter 7

The Fast Fourier Transform

7.1 INTRODUCTION

In Chap. 6 we saw that the discrete Fourier transform (DFT) could be used to perform convolutions. In this
chapter we look at the computational requirements of the DFT and derive some fast algorithms for computing
the DFT. These algorithms are known, generically, as fasr Fourier transforms (FFTs). We begin with the radix-2
decimation-in-time FFT, an algorithm published in 1965 by Cooley and Tukey. We then look at mixed-radix
FFT algorithms and the prime factor FFT.

7.2 RADIX-2 FFT ALGORITHMS
The N-point DFT of an N-point sequence x(n) is

N—1
Xy =) x(mWy (7.1

n=0

Because x(n) may be either real or complex, evaluating X (k) requires on the order of N complex multiplications
and N complex additions for each value of k. Therefore, because there are N values of X(k), computing an
N-point DFT requires N2 complex multiplications and additions.

The basic strategy that is used in the FFT algorithm is one of “divide and conquer,” which involves de-
composing an N-point DFT into successively smaller DFTs. To see how this works, suppose that the length of
x(n) is even (i.e., N is divisible by 2). If x(n) is decimated into two sequences of length N /2, computing the
N /2-point DFT of each of these sequences requires approximately (N /2)* multiplications and the same number
of additions. Thus, the two DFTs require 2(N /2)* = 1 N? multiplies and adds. Therefore, if it is possible to find
the N-point DFT of x(n) from these two N /2-point DFTs in fewer than N'2/2 operations, a savings has been
realized.

7.2.1 Decimation-in-Time FFT

The decimation-in-time FFT algorithm is based on splitting (decimating) x(»n) into smaller sequences and finding
X (k) from the DFTs of these decimated sequences. This section describes how this decimation leads to an efficient
algorithm when the sequence length is a power of 2.

Let x(n) be a sequence of length N = 2", and suppose that x(n) is split (decimated) into two subsequences,
each of length N /2. As illustrated in Fig. 7-1, the first sequence, g(n), is formed from the even-index terms,

N
g(n) =x(2n) n=0.1,.... E_]
and the second, h(n), is formed from the odd-index terms,
N
hn)=x2n+1 n=0,1,..., —2——I

In terms of these sequences, the N -point DFT of x(n) is

N-1

Xy =Y xmWit =Y x(mWit + > x(mWpt
n=0 n even n odd
N N

2

2
=D gOWI + Y how (7.2)
=0 1=0

262

CHAP. 7] THE FAST FOURIER TRANSFORM 263

z(n)
z(2) z(4) z(7)
2(0) z(3) z(5)
! T "
—;?1 2 3 4 5 7 8
1(6)
Even-Index 7 \&d[ndex Terms
g(n) 4 A(n)
z(7)
[z(3) z(5)
n
—O——
-2 -1 1 2 3 4 5
L
z(6) z(1)
Fig. 7-1. Decimating a sequence of length N = 8 by a factor of 2.
Because W = WX ,, Eq. (7.2) may be written as
L Yy
Xty =Y eMWi, + wk Z hOW
1=0 =0
Note that the first term is the N /2-point DFT of g(»n), and the second is the N /2-point DFT of h(n):
Xk)=Ghk)+WiHK) k=0.1,....N =1 (7.3)

Although the N /2-point DFTs of g(n) and A(n) are sequences of length N /2, the periodicity of the complex
exponentials allows us to write

G(k):G(k+g£> H(k):H(k—F%)

Therefore, X (k) may be computed from the N /2-point DFTs G (k) and H (k). Note that because

Wk+N/2 " WN/2 —wk

then Wl TH(k+ Y) = —WhH(K)

and it is only necessary to form the products W,f, H{k)fork =0,1,...,N/2 — 1. The complex exponentials
multiplying H (k) in Eq. (7.3) are called rwiddle factors. A block diagram showing the computations that are
necessary for the first stage of an eight-point decimation-in-time FFT is shown in Fig. 7-2.

If N/2 is even, g(n) and h(n) may again be decimated. For example, G (k) may be evaluated as follows:

N N
L L ¥y

G =S gwit = 3 ety + 3 oWk,

n=0 n even n odd

264 THE FAST FOURIER TRANSFORM [CHAP. 7
G(0)

z(0) o—._‘ O X(0)
0
G(1) /TV)

2(2) O———) Q X(1)
4-Point w
DFT G(2) V/oa

z(4) O———ro Q X(2)
2
wg

z(1) O———r X(4)
Wy

z(3) O—— , X(5)
4-Point H(1) W

z(5)o——of OFT o X(6)
R N

z(7) O——r —O X(7)
H(3) wyi

Fig. 7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

As before, this leads to

y_

Y

Gl =" g2mWity + Wk, Y e2n + WL,

n=0 n=0

N
road |

where the first term is the N /4-point DFT of the even samples of g(n), and the second is the N /4-point DFT of
the odd samples. A block diagram illustrating this decomposition is shown in Fig. 7-3. If N is a power of 2, the
decimation may be continued until there are only two-point DFTs of the form shown in Fig. 7-4.

z(0) O——— —(O— G(0)
2-Point
wy
DFT
z(4) O—— G(1)
1
z(2) O———r G(2)
2-Point
DFT
z(6) O——— G(3)

Fig. 7-3. Decimation of the four-point DFT into two two-point
DFTs in the decimation-in-time FFT.

q(0) Q

0 Q(0) = q(0) +q(1)

O Q(1) = q(0) — ¢(1)

q(1)

L

Fig. 7-4.

-1
A two-point DFT.

CHAP. 7] THE FAST FOURIER TRANSFORM 265

The basic computational unit of the FFT, shown in Fig. 7-5(a), is called a burterfly. This structure may be
simplified by factoring out a term W, from the lower branch as illustrated in Fig. 7-5(b). The factor that remains

is W}C’/z = —1. A complete eight-point radix-2 decimation-in-time FFT is shown in Fig. 7-6.
O —{) O O
XW&

A Ao d Ao
W;'{+N/2 W;\.‘ -1
(@) (b

Fig. 7-5. (a) The butterfly, which is the basic computational element of the FFT algorithn:.
(b) A simplified butterfly, with only one complex multiplication.

z(0) O X(0)

X(1)

z(4) O

X(2)

z(2) O

z(6) O A A vo X(3)

z(1) O

z(5) O

z(3) O

z(7) O

Fig. 7-6. A complete eight-point radix-2 decimation-in-time FFT.

Computing an N -point DFT using a radix-2 decimation-in-time FFT is much more efficient than calculating
the DFT directly. Forexample, if N =2V, there are log, N = v stages of computation. Because each stage requires
N /2 complex multiplies by the twiddle factors W, and N complex additions, there are a total of %N log, N
complex multiplications' and N log, N complex additions.

From the structure of the decimation-in-time FFT algorithm, note that once a butterfly operation has been
performed on a pair of complex numbers, there is no need to save the input pair. Therefore, the output pair
may be stored in the same registers as the input. Thus, only one array of size N is required, and it is said
that the computations may be performed in place. To perform the computations in place, however, the input
sequence x(n) must be stored (or accessed) in nonsequential order as seen in Fig. 7-6. The shuffling of the input
sequence that takes place is due to the successive decimations of x(n). The ordering that results corresponds to a
bit-reversed indexing of the original sequence. In other words, if the index » is written in binary form, the order
in which in the input sequence must be accessed is found by reading the binary representation for n in reverse
order as illustrated in the table below for N = 8:

'The number of multiplications is actually a bit less than this because some of the twiddle factors are equal to 1.

266 THE FAST FOURIER TRANSFORM [CHAP. 7

Bit-Reversed
n | Binary Binary n'
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 11 111 7

Alternate forms of FFT algorithms may be derived from the decimation-in-time FFT by manipulating the
flowgraph and rearranging the order in which the results of each stage of the computation are stored. For example,
the nodes of the flowgraph may be rearranged so that the input sequence x(n) is in normal order. What is lost
with this reordering, however, is the ability to perform the computations in place.

7.2.2 Decimation-in-Frequency FFT

Another class of FFT algorithms may be derived by decimating the output sequence X (k) into smaller and smaller
subsequences. These algorithms are called decimation-in-frequency FFTs and may be derived as follows. Let
N be a power of 2, N = 2", and consider separately evaluating the even-index and odd-index samples of X (k).
The even samples are

N-I

X2k =" x(mwit

n=0

Separating this sum into the first N /2 points and the last N /2 points, and using the fact that W™ = W[, this
becomes

§-1 N=1

X2k =Y " x(mWik, + Y x(mWi,
n=0 n=N/2

With a change in the indexing on the second sum we have

N
LA

X2k) =Y x(mWil, +

n=(}

[S1E3
I

1
N (n+ Yk
x(n + —2_)WN/22

<

. 43k
Finally, because WN"/2 =Wk,

: N
X(2k) = Z [x(n) +x (n + ?)] Wik,
n=0
which is the N /2-point DFT of the sequence that is formed by adding the first N /2 points of x(n) to the last N /2.
Proceeding in the same way for the odd samples of X (k) leads to

¥
X@2k+1) = Z(W [xm) - x(n + %)]w‘sﬁz (7.4)
n=0

A flowgraph illustrating this first stage of decimation is shown in Fig. 7-7. As with the decimation-in-time FFT,
the decimation may be continued until only two-point DFTs remain. A complete eight-point decimation-in-
frequency FFT is shown in Fig. 7-8. The complexity of the decimation-in-frequency FFT is the same as the
decimation-in-time, and the computations may be performed in place. Finally, note that although the input
sequence .x(n) is in normal order, the frequency samples X (k) are in bit-reversed order.

CHAP. 7] THE FAST FOURIER TRANSFORM 267

————O X(0)

. ——0 X(2)
4-Point

DFT L OX(4)

——"-0 X(6)

———0 X(1)

. ———0 X(3)
4-Point

DFT X(5)

——O0 X(7)

Fig. 7-7. Aneight-pointdecimation-in-frequency FFT algorithm af-
ter the first stage of decimation.

Ox =0 -0 X (0)
o, 1 O -0 X (4)
O =0 -0 X(2)
O X O -0 X (6)
O . O -0 X(5)
O O -0 X(3)

; O -0 X(7)

Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT.

7.3 FFT ALGORITHMS FOR COMPOSITE N

It is not always possible to work with sequences whose length is a power of 2. However, efficient computation
of the DFT is still possible if the sequence length may be written as a product of factors. For example, suppose
that N may be factored as follows:

N =N, N,

We then decompose x(n) into N, sequences ot length N, and arrange these sequences in an array as follows:

xX(0) X(N>) e X(N2oNy = 1))

x(h XN+ 1) o X(N(Np =D+ 1)
. . . (7.5)

X(Nz'—]) \(2N2 — l))L(N]Nz — l)

268 THE FAST FOURIER TRANSFORM [CHAP. 7

EXAMPLE 7.3.1 For a sequence of length N = 15. with N; = 3 and N, = 5, the sequence x(n) may be decimated into
five sequences of length three, and these sequences may then be arranged in a two-dimensional array as follows:

x(0) x(5) x(10)
x(D) x(6) x(11)
Xx=[x(2) x(7) x(12)
x(3) x(8) x(13)
x(4) x(9) x(14)

Alternatively, if we let Ny = 5 and N, = 3, x(n) may be decimated into three sequences of length five and arranged in 2
two-dimensional array of three rows and five columns,

x(0) x(3) «x(6) x(9) «x(12)
x=|x(I) x@) x(7) x(10) x(13)
2 x(5) x®) x(11) x(14)

By defining index maps for n and k as follows,

O0<n <N -1
n:Ng-n1+n2 { =0= :

0<n;, <Ny—1

0<k =N —1
k=ki + N, -k

0<hky <Ny, —1

the N -point DFT may be expressed as

Na—=1 N —1
X(k) = X (ki + Nikp) = D)" x(Nany + ny) Wy HHitamn) (7.6)

ny=0 ny=0

No—1 N —1

E : E : Nk k Nk NyNok
— X(N2n| +n2)wNz 1"|WN|"2WN| lezWNl 2K21y

ny=0 n;=0

Nok 3 Nk k NiNak
Because W, "' = WN‘I"', W' = WNZZ"Z, and Wy '™ = 1, the DFT becomes

Na—1 N -1
X(khy=Y [[Y x(Nany +n2)wz1"']w,’;’"2]w,’yz"z (7.7)

na=0 ny =0

Note that the inner summation,

Ny =1
G(nQ, k[) = Z "'(Nzﬂl + nz)W;\;]Ikl

m=0

is the N,-point DFT of the sequence x(N,n| + n;), which is row n; of the two-dimensional array in Eq. (7.5).
Computing the N;-point DFT of each row of the array produces another array,

G(0,0) GO, GO,N - 1)
G(1,0) G(1. 1) G, Ny = 1)
G:
GIN,—-1,00 GV, =1, 1) --- G(N2—1,N; = 1)

consisting of the complex numbers G (n,, k). Note that because the data in row 7, is not needed after the N, -point
DFT of x(Non| + ny) is computed, G(n,, k;) may be stored in the same row (i.c., the computations may be
performed in place).

CHAP. 7] THE FAST FOURIER TRANSFORM 269

The next step in the evaluation of X (k) in Eq. (7.7) is to multiply by the twiddle factors W,f,‘"zz

G(na, k1) = W™ G(na, ki)

The final step is to compute the N,-point DFT of the columns of the array G(na, ky):

Ny—1
X(ky + Niko) = Y Glna, k)W 3"
n.=0

The DFT coefficients are then read out row-wise from the two-dimensional array:
Xy =Xtk + Nky)

A pictorial representation of this decomposition is shown in Fig. 7-9 for N = 15.

Wil
P L
/ 5 / > ® X(1)

0 /} z(0) = ® X(0) x)
(} g - —e X(4) X(8)
g / z(1) c ° x(3i X
// 13 a ————— X(l1)

2 z(2) - —e X(6)
/ 8 / g > e X(10)

f / 14) °<.3 o = X (14)
/ 9 / : - © = A X(13)

4 z(4) ——————e X(12)
el

Fig. 7-9. Computation of a 15-point DFT with N\ = 3 and N, = 5 using 3-point and 5-point DFTs,

EXAMPLE 7.3.2 Suppose that we want to compute the 12-point DFT of x(n). With Ny = 3 and N, = 4, the first step is
to form a two-dimensional array consisting of Ny = 3 columns and N, = 4 rows,

n) 0 | 2
n2
0 x(0) x4 x(8)
| x() x5 x99
2 x(2) x(6) x(10)
31 x3) x(M x(1D
and compute the DFT of each row,
ky 0 1 2
hy
0 G0,00 GO, 1) G(0,2)
1 G(1,0 G 1) G2
2 GR2,00 G2, 1) G2,
3 G@3,00 G631 G@3B.2)

For example, the DFT of the first row is

G(0, k) = x(0) + x(H)W5 + x(8)W k=0,1,2

270 THE FAST FOURIER TRANSFORM [CHAP. 7

The next step is to multiply each term by the appropriate twiddle factor. The array of factors is

! 1

I
l W[j WIZE
LWy W
! Wi‘z Wlﬁz
This produces the array G(ns, ky):
ky 0 | 2
n;
0 | GO0 Go.1n G.2)
1 Gt.oy G, n G2
2 | GO G G2
3 G3.0) G3, 1 G@3.2)

The final step is to compute the DFT of each column:

D k| 0 1 2
0 X0 X X(2)
1 X(3) X&) X(5)
2 X)) X X(®8)
3 X X0 XxXab

This results in the lowgraph shown in Fig. 7-10. Note that because N, can be factored, N> = 2 x 2, the four-point DFTs
of the columns of G(n;, k;) may be evaluated using two-point DFTs. For example, if the first column is arranged in a
two-dimensional array,

G.0) G(2.0)
G(1,00 G@3,0

after taking the two-point DFTs of the rows, the terms are multiplied by the twiddle factors

)=l

and then the two-point DFTs of the columns are computed.

Up to this point, we have only assumed that N could be factored as N = N, - N,. It is possible, however, that
either or both of these factors could be factored further. What is important for the FFT algorithm to be efficient
is that N be a highly composite number:

N =N;-Ny---N,
In this case, it is possible to define multidimensional index maps for n and & as follows,

n=~Nmn +N,_jnp+---+n,
k =1(| +N1k2+'-'+N,,/\’,,

and the development of the FFT algorithm proceeds as described above. 1If N = R", the corresponding FFT
algorithm is called a Radix-R algorithm. 1f the factors are not equal, the FFT is called a mixed-radix algorithm.

CHAP. 7] THE FAST FOURIER TRANSFORM 271

z(0) O—— O- -0 ——0 X(0)
3-Point
z(4) O DFT 4-Point o XB
z(8) DFT 1 . o x()
z(1) O—— ———0O X(9)
z(5) O—— 3};)33# 0 X(1)
z(9) 4-Point X(4)
z(2) O—— DFT ——-<0 X(7)
z(6) O—— 33?;1: ——0 X(10)
£(10) O—r—1 0 X(2)
2(3) O—— | 4-Point — 0 X@)
(1) C 3-;’31;: DFT ()
WG
z(11) O——o S o L~ 0 x(1)

Fig. 7-10. FFT algorithm for N = 12.

74 PRIME FACTOR FFT

For some values of N, with the appropriate index mapping, it is possible to completely eliminate the twiddle
factors. These mapping have the form

0<n =N -1

n = ((An; + Bny))
((Am 2NN IOSVMEN:—I

<k <N -1

k= ((Cky + Dk
((Ck, 2N IOSszNz—l

where A, B, C, and D are integers, and {(-))y denotes the evaluation of the index modulo N. If N = N, - N,,
and if Ny and N are relatively prime (i.e., they have no common factors), the twiddle factors may be eliminated
with the appropriate values for A, B, C, and D. The requirements on these numbers are as follows:

1. All numbers between O and N — 1 for » and & must appear uniquely as », and », are varied and as &,
and k, are varied.

2. The numbers A, B, C, and D are such that
(Any+Bny)Cky+Dky) __ nvky g naks
Wy =Wy""Wy,

The second condition requires that

((AC)nv =N, ((BD)nv =Ny {(AD)n =((BC)ny =0

Finding a set of numbers that satisfies these two conditions falls in the domain of number theory, which will not
be considered here. However, one set of numbers that satisfies these conditions is

A=N, B =N,
€ =Na((N;))y, D = Ni((N7))y,
where ((N,"))N2 denotes the multiplicative inverse of N; modulo N,. For example, if N = 12 with N = 3

and N» = 4, (47")); = | because (4 - 1))3 = 1 and ((37'))s = 3 because ((3 - 3))3 = |.

272 THE FAST FOURIER TRANSFORM [CHAP. 7

EXAMPLE 7.4.1 A 12-point prime factor algorithm with Ny = 3 and N, = 4 is as follows. With A = N, = 4 and
B =N, =3, andwithC = Nz((Nz"))N, =4and D = N,((N{"))N2 = 9. Thus, the index mappings for n and & are

n = ((4n, + 3n2)n {Ofm =2
- 0<n, <3
0<k <2
k = ((4k) + 9%2))12 {0 <k <3
and the two-dimensional array representation for the input is
| 0 1 2 & k‘| 0 1 2
0 x(0) x(4) x(8) 0 X(0) X&) X(8)
1 x(3) x(7y x(1D) 1 X X X(5)
2 x(6) x(10) x(2) 2 X®) X10) X2
3 x(9) x(1) x(5) 3 X3 X XD

The representation for X (k) is therefore

3 2
X ((4k) + 92Dz = Z”Z x((4n + 3nz))|2W_{"k':| }W;‘Z"Z

ny=0 nmy=0

Thus, the DFT is evaluated by first computing the three-point DFT of each row of the input array, followed by the four-point
DFT of each column. The following figure shows how the four-point DFTs are interconnected to the three-point DFTs.

z(0) O———j O O ——0 X(0)
=) o—— *Jor aPoimt | O X0
z(8) O—— DFT L . o x(
z(3) O—— ——0 X(3)
2(7) O——ro{ 3ot ——o0 x(4)
z(11) O—— 4-Poine [O X
2(6) O—— DFT L. o xqo)
2(10) O——{ HPomnt ——0 X(7)
z(2) O—— ——0 X(8)
2(9) O—— 4Point | O X6
2(1) O] 3;3331{“ DFT | & x(
2(5) O——o o O L0 x(11)

Because a 4-point DFT does not require any multiplications (see Prob. 7.11), and because each 3-point DFT requires only 4
complex multiplications, the 12-point prime factor algorithm requires 16 complex multiplies. For a mixed-radix FFT, there
are, in addition, six twiddle factors. The cost for eliminating these six multiplications is an increase in complexity in indexing
and in programming.

CHAP. 7]

THE FAST FOURIER TRANSFORM 273

Solved Problems

Radix-2 FFT Algorithms

7.1

7.2

Assume that a complex multiply takes 1 us and that the amount of time to compute a DFT is determined
by the amount of time it takes to perform all of the multiplications.

(a)
(b)
()

(@)

(b)

(¢)

How much time does it take to compute a 1024-point DFT directly?
How much time is required if an FFT is used?
Repeat parts (@) and (b) for a 4096-point DFT.

Including possible multiplications by £1, computing an N -point DFT directly requires N2 complex multipli-
cations. If it takes | us per complex multiply, the direct evaluation of a 1024-point DFT requires

torr = (1024)? - 107%s 22 1.05 s

Witharadix-2 FFT, the number of complex multiplications is approximately (N /2) log, N which, for N = 1024,
is equal to 5120. Therefore, the amount of time to compute a 1024-point DFT using an FFT is

tepr = 5120 10™°ms = 5.12 ms

If the length of the DFT is increased by a factor of 4 to N = 4096, the number of multiplications necessary
to compute the DFT directly increases by a factor of 16. Therefore, the time required to evaluate the DFT

directly is
tppr = 16.78 s

If, on the other hand, an FFT is used, the number of multiplications is
2,048 - log, 4,096 = 24,576
and the amount of time to evaluate the DFT is

trpr = 24.576 ms

A complex-valued sequence x(n) of length N = 8192 is to be convolved with a complex-valued sequence
h(n) of length L = 512.

(a)

Find the number of (complex) multiplications required to perform this convolution directly.

(b) Repeat part (@) using the overlap-add method with 1024-point radix-2 decimation-in-time FFTs to

(@)

()

evaluate the convolutions.
If x(n) is of length N = 8192, and h(n) of length L = 512, performing the convolution directly requires

512.8,192 = 4,194,304

complex multiplications.

Using the method of overlap-add with 1024-point FFTs, the number of multiplications is as follows. Because
h(n) is of length 512, we may segment x(n) into sequences x,{(n) of length N = 512 so that the 1024-point
circular convolutions of A#(n) with x;(n) will be the same as linear convolutions (although we could use sections
of length 513, this does not result in any computational savings). With the length of x(n) being equal to 8192, this
means that we will have 16 sequences of length 512. Therefore, to perform the convolution, we must compute
17 DFTs and 16 inverse DFTs. In addition, we must form the products Y;(k) = H(k)X(k)fori = 1,2,...,16.
Thus, the total number of complex multiplications is approximately

33.512log,(1,024) + 16 - 1,024 = 185,344

which is about 4.5 percent of the number of complex multiplies necessary to perform the convolution directly.

274

7.3

7.4

7.5

THE FAST FOURIER TRANSFORM [CHAP. 7

Speech that is sampled at a rate of 10 kHz is to be processed in real time. Part of the computations
required involve collecting blocks of 1024 speech values and computing a 1024-point DFT and a 1024-
point inverse DFT. If it takes 1 us for each real multiply. how much time remains for processing the data
after the DFT and the inverse DFT are computed?

With a 10-kHz sampling rate, a block of 1024 samples is collected every 102.4 ms. With a radix-2 FFT, the number
of complex multiplications for a 1024-point DFT is approximately 512 log, 1024 = 5120. With a complex multiply
consisting of four real multiplies. this means that we have to perform 5,120 - 4 = 20,480 real multiplies for the DFT
and the same number for the inverse DFT. With | us per multiply, this will take

t =2-20.48 = 40.96 ms

which leaves 61.44 ms for any additional processing.

Sampling a continuous-time signal x,(¢) for | s generates a sequence of 4096 samples.

(a) What is the highest frequency in x,(¢) it it was sampled without aliasing?

(b) TIf a 4096-point DFT of the sampled signal is computed, what is the frequency spacing in hertz
between the DFT coefficients?

(¢) Suppose that we are only interested in the DFT samples that correspond to frequencies in the range
200 < f < 300 Hz. How many complex multiplies are required to evaluate these values computing
the DFT directly, and how many are required if a decimation-in-time FFT is used?

(d) How many frequency samples would be needed in order for the FFT algorithm to be more efficient
than evaluating the DFT directly?

(a) Collecting 4096 samples in 1 s means that the sampling trequency is f; = 4096 Hz. If x,(¢) is to be sampled
without aliasing, the sampling frequency must be at least twice the highest frequency in x,(r). Therefore, x,(¢)
should have no frequencies above f, = 2048 Hz.

(h) With a 4096-point DFT. we are sampling X (¢/) at 4096 equally spaced frequencies between O and 27, which
corresponds to 4096 frequency samples over the range 0 < f < 4096 Hz. Therefore, the frequency spacing is
Af = | Hz.

(c) Over the frequency range from 200 to 300 Hz we have 101 DFT samples. Because it takes 4096 complex
multiplies to evaluate each DFT coefficient, the number of multiplies necessary to evaluate only these frequency
samples is

101 - 4.096 = 413,696

On the other hand, the number of multiplications required if an FFT is used is
2,048 log, 4,096 = 24,576

Therefore, even though the FFT generates all of the frequency samples in the range 0 < f < 4096 Hz, it is
more efficient than evaluating these 101 samples directly.

(d) An N-point FFT requires —éN log, N complex multiplies, and to evaluate M DFT coefficients directly requires
M - N complex multiplications. Therefore, the FFT will be more efticient in finding these M samples if

M-N > iNlog, N
or M = 1log, N
With N = 4096, the number of frequency samples is M = 6.
Because some of the %N log, N multiplications in the decimation-in-time and decimation-in-frequency

FFT algorithms are multiplications by %1, it is possible to more efficiently implement these algorithms
by writing programs that specifically excluded these multiplications.

(a) How many multiplications are there in an eight-point decimation-in-time FFT if we exclude the
multiplications by £1?

CHAP. 7] THE FAST FOURIER TRANSFORM 275

7.6

(b) Repeat part (a) for a 16-point decimation-in-time FFT.
(¢) Generalize the results in parts (@) and (b) for N = 2",

(a) For an eight-point decimation-in-time FFT, we may count the number of complex multiplications in the flow-
graph given in Fig. 7-6. In the first stage of the FFT, there are no complex multiplications, whereas in the second
stage, there are two multiplications by W¢. Finally, in the third stage there are three multiplications by W, W2,
and W3. Thus, there are a total of five complex multiplies.

(b) A 16-point DFT is formed from two 8-point DFTs as follows:
X (k) = G(k) + W H (k) =0.1,.... 15
where G (k) and H (k) are eight-point DFTs. There are eight butterflies in the last stage that produces X (k)
from G (k) and H (k). Because the simplified butterfly in Fig. 7-5(b) only requires only one complex multiply,
and noting that one of these is by W = 1, we have a total of seven twiddle factors. In addition, we have

two 8-point FFTs, which require five complex multiplies each. Therefore, the total number of multiplies 15
2.5+7=17.

(c) Let L(v) be the number of complex multiplies required for a radix-2 FFT when N = 2". From parts (@) and (b)
we see that L(3) = 5 and L(4) = 17. Given that an FFT of length N = 2"~' requires L(v — 1) multiplies, for
an FFT of length N = 2", we have an additional 2"~! butterflies. Because each butterfly requires one multiply,
and because one of these multiplies is by W = 1, the number of multiplies required for an FFT of length
2" is

Lw)y=2-L(v—1+2""" -1

Solving this recursion for L(v), we have the following closed-form expression for L(v):

v 0’
tw=2[5-1+(3) |

The FFT requires the multiplication of complex numbers:
(a1 + jb) - (a2 + jb2)) = ¢ + jd,

(a) Write out this complex multiplication, and determine how many real multiplies and real adds are
required.

(b) Show that the complex multiplication may also be performed as follows:
cy=(a — b)) b+ (ay — b)) a
dy =(ay — b)) by +(ay+b2)- b
and determine the number of real multiplies and adds required with this method.
(a) The product of two complex number is
(@ + jb) - (@ + jby) = aja; — biby, + j(brax + a,by)

which requires four real multiplies and three real adds.

(b) Expanding the expressions for ¢,, we have
ca={a1—b) by+(a— b)) -ay =a1by — b\by + aza, — ba, = aya, — b\b,
as required. Similarly, for d, we have
dy = (ay— b)) -by+(ay + by)- by =a\b, — biby + ayby + baby = a,b; + asb,

also as required. This approach only requires three multiplies and four adds.

276

7.7

7.8

7.9

THE FAST FOURIER TRANSFORM [CHAP. 7

The decimation-in-time and decimation-in-frequency FFT algorithms evaluate the DFT of a complex-
valued sequence. Show how an N -point FFT program may be used to evaluate the N-point DFT of two
real-valued sequences.

As we saw in Prob. 6.18. the DFTs of two real-valued sequences may be found from one N-point DFT as follows.
First, we form the N -point complex sequence

x(n) = xi(n) + jxa(n)

After finding the N-point DFT of x(n), we extract X (k) and X,(k) from X (k) by exploiting the symmetry of the
DFT. Specifically,

X (k) = SIX(K) + X*((N = k))n]
which is the conjugate symmetric part of X (k), and
Xa(k) = $IX (k) = X*((N = k))w]

which is the conjugate antisymmetric part of X (£).

Determine how a 2N -point DFT of a real-valued sequence may be computed using an N-point FFT
algorithm.

Let g(n) be a real-valued sequence of length 2N. From this sequence, we may form two real-valued sequences of
length N as follows:

(n) = g(2n) n=0.1,..., N —1
x(n)=22n+1) n=0,1,..., N —1

From these two sequences, we form the complex sequence
) = x1(n)+ jxa(n)

Computing the N-point DFT of .x(n), we may then extract the N-point DFTs of x,(n) and x,(n) as follows
(see Prob. 7.7):

Xi(k) = SIX) + XN — k)]
Xa(k) = 3[X (k) — X*((N — k)|

Now all that is left to do is to relate the 2N -point DFT of g(n) to the N-point DFTs X (k) and X,(k). Note that

2N -1 N-1 Nol
Gk = gmWi = Zg(2n)W22,'\‘,‘ + Zg(gn Wk
n=0 n=0 n=0
N-1 Nl
= Z-\‘l(H)W,’\',‘ + Wi, Z ()W
n=(0 n=0
Therefore. Gk = X\(k)+ Wiy Xok) k=0,1,....2N = |

where the periodicity of X (k) and Xa(k) is used to evaluate G(k) for N < k < 2N, that is,
X1(k)y= X\(k+N) Xa(k) = Xatk + N)
Given an FFT program to find the N-point DFT of a sequence, how may this program be used to find

the inverse DFT?

As we saw in Prob. 6.9, we may find x(n) by first using the DFT program to evaluate the sum

N-1
gm =Y X" (mW}!
=0

CHAP. 7] THE FAST FOURIER TRANSFORM 277

which is the DFT of X*(k). Then, x(n) may be found from x(»n) as follows:

x(n)y = ng*(n)

Alternatively, we may find the DFT of X (k),

N~—1

f =" Xmwit

n=0

and then extract x(»n) as follows:

I ! -« (N=—n)k ! = —nk
x(n) = NI(N —n)= N;:o X (k)W y = Nk:() X(kW,y,
7.10 Let x(n) be a sequence of length N with
(n) + N 0.1 N 1
x(n)=—x = =0.1,...,= -
n n 2 n 3

where N is an even integer.

(a) Show that the N -point DFT of x(n) has only odd harmonics, that is,
X(k)y=0 k even

(b) Show how to find the N-point DFT of x(n) by finding the N /2-point DFT of an appropriately
modified sequence.

(a) The N-point DFT of x(n) is

N—I 51 N-1
X(hy =Y xmWit =Y xmWi + > x(mWwp
n=0 n=0 n=N/2
51 - N
= Z x(mWr 4 Z x(n + 5>W,‘J'+N/2)k
n=(0 n=0

51 N
= Z |:x(n) + (—I)k,\'(n + E—)]Wﬁ,k

n=0
Because x(n) = —x(n + N/2), if k is even, each term in the sum is zero, and X (k) =0 fork =0, 2,4,
(b) In the first stage of a decimation-in-frequency FFT algorithm, we separately evaluate the even-index and odd-

index samples of X (k). If X (k) has only odd harmonics, the even samples are zero, and we need only evaluate
the odd samples. From Eq. (7.4) we see that the odd samples are given by

L
N
XQk+1)= wn [x(n) —x(n + —)]W”"
';) N 2 NJ2
With x(n) = —x(n + N /2) this becomes

N
T_|

XQk+ 1= [2wixm]wit,
n=0
which is the N /2-point DFT of the sequence y(n) = 2Wyx(n). Therefore, to find the N-point DFT of x(n),
we multiply the first N /2 points of x(n) by 2W},

N
y(ny=2Wyx(n) n=0,l,2,...,5
and then compute the N /2-point DFT of y(n). The N /2-point DFT of x(») is then given by
N =2
XQ2k+1)=Y(k) k:O,l,..,(3)
(N-2)

X2k)y=0 k=0,1,...

2

278

THE FAST FOURIER TRANSFORM

FFT Algorithms for Composite N

7.11

[CHAP. 7

When the number of points in the DFT is a power of 4, we can use a radix-2 FFT algorithm. However,
when N = 4", it is more efficient to use a radix-4 FFT algorithm,

(@) Derive the radix-4 decimation-in-time FFT algorithm when N = 4",

(b) Draw the structure for the butterfly in the radix-4 FFT, and compare the number of complex multiplies

(a)

and adds with a radix-4 FFT to a radix-2 FFT.

To derive a decimation-in-time radix-4 FFT, let Ny = N /4 and N, = 4. and define the index maps

N

0<n <——1
n=4-n1+n: 4
0<n, <4
N

O0<hk <=— -1
k=k|+-—k2 4
0<kr <3

We then express X (k) using the decomposition given in Eq. (7.7) with Ny = N /4 and N, = 4,
N 3 ¥
X(k) = X(k| + ZI&:) = Z |:Z .\'(4I1| + nz)W,Cvl/ﬁ):IW’[f,IHZ] W:an
=0 Ln=0
The inner summation,

N
L.

G)= X ton 4 W

=

is the NV /4-point DFT of the sequence x(4n, + n»), and the outer summation is a 4-point DFT,

N a
X(kl + Zkg) =Y Gk)W,

ny=0

where G(I?z,/ﬂ) = W;“"IG(ng.kQ

Since W4 = —j, these 4-point transforms have the form

N N N - .
X(h + Zkz) =Gk, 0+ (—)MGU k) +(=DNGQR, k) + (G GB. k)

fork, =0,1,2,3,andn, =0, I,..., (N/4) — 1. If N, = N /4 is divisible by 4, then the process is repeated.

In this way, we generate v = log, N stages with N /4 butterflies in each stage.

(b) The 4-point butterflies in the radix-4 FFT perform operations of the form

3

Flhy k) =Y [Gm knWy W2 ky=0.1.2,3

ny=0

CHAP. 7] THE FAST FOURIER TRANSFORM 279

With W2 = jk2 the butterflies have the structure shown in the figure below.

WO

N

G(0,k) O Q { Y O F(0,k)
Wy -3

G(1,k1) O O F(1,k)
Wik

G(2,kh) O OF(2,k1)
Wik

G(3,k) 0O O F(3,k1)

Since multiplications by % only requires interchanging real and imaginary parts and possibly changing a sign
bit, then each 4-point butterfly only requires 3 complex multiplications. With v = log, N stages, and N /4
butterflies per stage, the number of complex multiplies for a DFT of length N = 4" is

3N |
8
For a radix-2 decimation-in-time FFT, on the other hand, the number of multiplications is

N
3-Xlog4N = og, N
Nl N
—lo
5 82

Therefore, the number of multiplications in a radix-4 FFT is % times the number in a radix-2 FFT.

7.12 Suppose that we would like to find the N-point DFT of a sequence where N is a power of 3, N = 3",
(a) Develop a radix-3 decimation-in-time FFT algorithm, and draw the corresponding flowgraph for
N =9.
(b) How many multiplications are required for a radix-3 FFT?

(¢) Can the computations be performed in place?

(a) A radix-3 decimation-in-time FFT may be derived in exactly the same way as a radix-2 FFT. First, x(n) is
decimated by a factor of 3 to form three sequences of length V /3:

f(n) = x(3n) n=0,1,...,
gmy=xBn+1) n=0,1...,

h(n) =x(3n+2) n=0.1,...,

280

THE FAST FOURIER TRANSFORM [CHAP. 7

Expressing the N-point DFT in terms of these sequences, we have

X(y= > xmWr+ Y xmWi+ Y xmwy

n=0,3.6,... n=1475,... n=2,57,...

N N

3 T
_ f(l)wlzul + Z g([)W[(VJIH)k + Z h(l)W,(VJHZ)k
1 =0 =0

4z

Il
>

Since Wi/* = W 5, then

N N
4 L

g1 3 3
XU =Y FOWEs+Wh D gOWis+ WY hOWY
=0 1=0 1=0

Note that the first term is the N /3-point DFT of f(n), the second is W} times the N /3-point DFT of g(n), and
the third is W2 times the N /3-point DFT of h(n),

X(k) = F(k) + WyG (k) + W H (k)

We may continue decimating by factors of 3 until we are left with only 3-point DFTs. The flowgraph for a
9-point decimation-in-time FFT is shown in Fig. 7-11. Only one of the 3-point butterflies is shown in the second
stage in order to allow for the labeling of the branches. The complete flowgraph is formed by replicating this
3-point butterfly up by one node, and down by one node, and changing the branch multiplies to their appropriate
values.

z(0) O O 0 X(0)
z(3)

wi
z(1) O
z(4)

w3
=(7) we o

w3

o) 0 X(8)

Fig. 7-11. Flowgraph fora9-point decimation-in-time FFT (only one butterfly in the second
stage is shown).

CHAP. 7] THE FAST FOURIER TRANSFORM 281

7.13

(b) If N = 3V, then there are v stages in the radix-3 FFT. The general form of each 3-point butterfly, shown in the
second stage of the flowgraph in Fig. 7-11, requires six multiplies (some require fewer if we do not consider
multiplications by £1). Since there are N /3 butterflies in each stage, then the total number of multiplications is

6N log, N

(¢) Yes, the computations may be performed in place.

Derive a radix-3 decimation-in-frequency FFT for N = 3", and draw the corresponding flowgraph for
N =09.

As with the radix-2 decimation-in-frequency FFT, with N =3", we separately evaluate the indices for which
(k)3 =0, ((k)); = 1, and ((k)); = 2. For ((k)); = 0 (i.e., k is a multiple of 3),

N-1
X3k =) x(mwy*

n=0

Separating this sum into the first N /3 points, the second N /3 points, and the last N /3 points, and using the fact that
Wit = Wik, this becomes

§-1 Py
X(3k) =) x(mWpt, + Z XMW + Z XMW

n=0 n—j- ”“T

With a change in the indexing in the second and third sums, we have

i b N\ o5 o o+ k
X(3k) = x(n)W?k x(n+ —) ER S x(n+) R
,.Z—; N/3 ; W ALTE "Z N/3

n+

Finally, because WN/q = W3, and WN/3 =Wy

%‘l N
EDEDY [x(n)+x(n + %) +x(n + %—)]w:fn

n=0

which is the N /3-point DFT of the sequence in brackets.
Proceeding in the same way for the samples X (3k + 1), we have

—1
XGk+1) =Y xmwy®"

n=0
Lo k =y k = 3
1 1
— Zx(n)wlc(fi +1) + Z x(n)W,'f,O +)+ Z x(n)W,'f,‘ k+1)
n=0 n=-'¥ nzg."!

L

n(3k+1) < N (n+N/3)(3k+1) i 2N (n42N /3)3k+1)
x(mWy +Zx(3)WN +ZX("+T>WN

=0 n=0

-z

il
g

=]

n=

N
T 1

N 2N
= [x(n)W,c +,\'(n + ?>Wn+N/3 _+_x(+ _j__)WZ+2N/3]‘/V;1</3
n=0

Finally, for the samples X (3k + 2) we have
¥

N\ o AINN . 20
X3k +2) = Z [X(n)wﬁn +x(n i ?)Wﬁ/ +2N/3 +x(n " T)W’%’ +4N/3]W,,‘;1;3
n=0

282 THE FAST FOURIER TRANSFORM [CHAP. 7

The flowgraph for a nine-point decimation-in-frequency FFT is shown below.

z(0)O o Q X(0)
z(1) X(3)
wi
2(2)0 e W X(6)
wi
2(3)0 a XQ)
z(4) X@4)
wi
2(5)0 o wg X(7)
wi
z(6) O Q X(2)
=(7) X(5)
w;
=(8)0 o o Wi X(8)
wi

7.14 Suppose that we have a number of eight-point decimation-in-time FFT chips. How could these chips be
used to compute a 24-point DFT?

A 24-point DFT is defined by
23

Xtky="_ x(mW

n=0

Decimating x(n) by a factor of 3, we may decompose this DFT into three 8-point DFTs as follows:

7 7 7
Xy =Y xBmWit + Z.x(z.n + WS 4 Zx(3n +)Wtk
n=0 n=0 n=0
7 7
= xmWHE +WEY xGn+ DWE + WE D x(Bn+ 2w
=0

7
n=f n=0 n=0

Therefore, if we form the three sequences

f(n)=x3n) n=0.12,...,7
gn) =x@Bn+1) n=0,12....7
h(n) = x(3n +2) n=012..., 7

and use the 8-point FFT chips to find the DFTs F(k), G(k), and H (k), the 24-point DFT of x(n) may be found by
combining the outputs of the 8-point FFTs as follows:

X(ky = F(k) + W3, G (k) + W3 H(k)

Prime Factor FFT

7.15 Find the index maps for a 21-point prime factor FFT with N; = 7 and N, = 3. How many multiplications
are required compared to a 32-point radix-2 decimation-in-time FFT?

CHAP. 7] THE FAST FOURIER TRANSFORM 283

For a 21-point prime factor FFT with Ny = 7and N, = 3, weset A = N, = 3and B = N; = 7. Then, with
C = No((N; "))n, = 15and D = Ni((N; ")), = 7, we have the following index mappings:

(Gny + Tn2)) D=0
1 =
! ny n2)In 0<m<2
k = ((15k; + Tk 0=ki=6
= ((15ky + Tka))n 0<k <2
Thus, the two-dimensional array representation for the input is
nl‘ 0 l 2 3 4 5 6
13
0 x(0) x(3) x(6) x(9) x(12) x(15) x(18)
| x(7) x(10)y x(13) «x(16) x(19) x(1) x(4)
2 x(14) x(17)y x(20) x(2) x(5) x(8) (1)

and the two-dimensional array for the output is

5
P Iq' 0 1 2 3 4 6

0 X0 X5 X X3) X8 X(12) X(6)
1 X X() X(16) X0y X&) X(19) X(13)
2 X4y X(®) X2 XU7 Xal o X(@$) o XQo0)

With the prime factor FFT, there are no twiddle factors. Therefore, the only multiplications necessary are those
required to compute the three 7-point DFTs, and the seven 3-point DFTs. Because each 3-point DFT requires 6 com-
plex multiplies, and each 7-point DFT requires 42, the number of multiplies for a 21-point prime factor FFT is
(7)(6) + (3)(42) = 168. For a 32-point radix-2 FFT, on the other hand, we require

16 log, 32 = 80

complex multiplies. Therefore. it would be more efficient to pad a 21-point sequence with zeros and compute a 32-
point DFT. The increased efficiency is a result of the fact that 32 = 27 is a much more composite number than 21 = 7-3.

7.16 Suppose that we would like to compute a 15-point DFT of a sequence x(n).

(a) Using a mixed-radix FFT with Ny = 5 and N, = 3, the DFT is decomposed into two stages, with
the first consisting of three 5-point DFTs, and the second stage consisting of five 3-point DFTs,
Make a sketch of the connections between the five- and three-point DFTSs, indicating any possible
twiddle factors, and the order of the inputs and outputs.

(b) Repeat part (a) for the prime factor algorithm with N, == 5 and N, = 3, and determine how many
complex multiplies are saved with the prime factor algorithm.

(a) Using a mixed-radix FFT with N, = 5 and N, = 3, the index mappings for n and k are as follows:

O<n <4

n=73n +n;
0<n, <2

0<k <4

k=k1+5A2
0<k, <2

Thus, the two-dimensional array representation for the input is

p ny 0 1 2 3 4

2
0 x(0) x3) x6) x9 x(12)
1 x(l)y x4 x(7) x(10) x(13)

2 x(2) x5 x(8) x(1) x(14)

284

THE FAST FOURIER TRANSFORM [CHAP. 7

After the five-point DFT of each row in the data array is computed, the resulting complex array is multiplied
by the array of twiddle factors:

| I T R B
1 Wis Wi Wil wi
I Wis Wis Wis W

The last step then involves computing the three-point DFT of each column. This produces the output array

X (k), which is

ky 0 3 4
k|
0 X(0) X3) X
| X(5) X@8) X
2 X(10) X(13) X(14)

The connections between the three- and five-point DFTs are shown in the following figure, along with the eight

twiddle factors:

2(0) O——I o— o o X(0)
2(3) O—— oL o X(5)
2(6) o—e—r] POu | & Xx(10)
z(9) O—— —-o X(1)
2(12) O——f Spome o X(6)
z(1) O—— 0 X(11)
2(4) O———oI W‘: o X(2)
2(7) o——r POt W‘: o o Spomt b—o x(1)
2(10) O——oI W'; 5 X(12)
(13) o—— Wi o X(3)
0 o i Lo xi
2(5) O—v—o Wl:’ L o X(13)
2(8) O—+—o 53’;3;’“ ::‘: L o X(4)
z(11) O——T | 185 33’;,’;‘“ L o X(9)
z(14) O—e—o I o ——o X(14)

(b) Using the prime factor algorithm with Ny =5 and N, =3, we set A=N,=3 and B =N, =5. Then, with
C= Nz((N{'))N1 =6and D = N,((N"‘))N2 = 10, we have the following index mappings for n and &:

n = ((3n) + 5n2));s {

k = ((6ky + 10k2))y5 {

0<n =4

0<n, <2

0<k <4
0<k <2

CHAP. 7]

THE FAST FOURIER TRANSFORM

The two-dimensional array representation for the input is

n|| 0 1 2 3 4
n3
0 x(0) x(3) x(6) x(9 x(12)
1 x(5) x(8) x(1) x(14) x(2)
2 x(10) x(13) x(I) x(@) x(D)
and for the output array we have
ky 0 1 2 3 4
ks
0 X(0) X® X(12) X3 X(9)
1 X(10) XD X7 X(13) X4
2 X% X(an xX@ X® X(14)

285

The interconnections between the five- and three-point DFTs are the same as in the mixed-radix algorithm,
However. there are no twiddle factors, and the ordering of the input and output arrays is different. The 15-point
prime factor algorithm is diagrammed in the figure below.

z(0) O—— ——0 o!

0 o sy
z(6) O—— 5-[1)>g'ilx‘1t —_

z(9) O— —]

z(12) O—r— 33)17‘0511‘lt
z(5) O——

z(8) O———

s B o— gt
z(14) O——

z(2) O—s——o

w0 o g
z(13) O—— —
o

w9 o] g
z(7) o—— o) o

X(0)
X(10)
X(5)
X(6)
X(1)
Xx(11)
X(12)
X(7)
X(2)
X(3)
X(13)
X(8)
X(9)
X(4)
X(14)

The savings with the prime factor algorithm over the mixed-radix FFT are the eight complex multiplies by the

twiddle factors.

Supplementary Problems

Radix-2 FFT Algorithms

7.17

Let x(n) be a sequence of length 1024 that is to be convolved with a sequence /(n) of length L. For what values of

L is it more efficient to perform the convolution directly than it is to perform the convolution by taking the inverse

DFT of the product X (k)H (k) and evaluating the DFTs using a radix-2 FFT algorithm?

286

7.18

THE FAST FOURIER TRANSFORM [CHAP. 7

Suppose that we have a 1025-point data sequence (1 more than N = 2'%). Instead of discarding the final value, we
zero pad the sequence to make it of length N = 2!' so that we can use a radix-2 FFT algorithm. (a) How many
multiplications and additions are required to compute the DFT using a radix-2 FFT algorithm? (b) How many
multiplications and additions would be required to compute a 1025-point DFT directly?

FFT Algorithms for Composite N

7.19 In aradix-3 decimation-in-time FFT, how is the input sequence indexed?

7.20 How many complex multiplications are necessary in a radix-3 decimation-in-frequency FFT?

7.21 Consider the FFT algorithm given in Example 7.3.2. (a) How many multiplications and additions are required to
compute a 12-point DFT? (b) How many multiplications and additions are necessary if the 12-point DFT is computed
directly?

Prime Factor FFT

7.22 Find the index maps for a 99-point prime factor FFT with Ny = 11 and N, = 9.

7.23 How many complex multiplications are required for a 12-point prime factor FFT with N\ = 4 and N; = 3 if we do
not count multiplications by 1 and £ ;?

7.24 How many twiddle factors are there in a 99-point prime factor FFT with N, = 11 and N, = 9?

7.25 How many complex multiplications are required for a 15-point prime factor FFT if we do not count multiplications
by 17

Answers to Supplementary Problems

717 L < 33,

718 (a) 11,264. (b) 1,050,625.

7.19 The index for x(n) is expressed in ternary form, and then the ternary digits are read in reverse order.

7.20 The same as a decimation-in-time FFT, which is 2N log; N.

7.21 (a)Each4-point DFT requires no multiplies and 12 adds, and each 3-point DFT requires 6 multiplies and 6 adds. With
6 twiddle factors, there are 6 + (4)(6) = 30 multiplies and (4)(6) + (3)(12) =60 adds. (b) 144 multiplies and 132 adds.

722 n=9n; + llny, and k = 45k, + 55k,.

7.23 24,

7.24 Norne.

7.25 90.

