
Chapter 7 

The Fast Fourier Transform 

7.1 INTRODUCTION 

In Chap. 6 we saw that the discrete Fourier transform (DFT) could be used to perform convolutions. In this 
chapter we look at the computational requirements of the DFT and derive some fast algorithms for computing 
the DFT. These algorithms are known, generically, asfast Fourier fransforms (FFTs). We begin with the radix-2 
decimation-in-time FFT, an algorithm published in 1965 by Cooley and Tukey. We then look at mixed-radix 
FFT algorithms and the prime factor FFT. 

7.2 RADIX-2 FFT ALGORITHMS 

The N -point DFT of an N -point sequence s ( n )  is 

Because x(n) may be either real or complex, evaluating X(k) requires on the order of N complex multiplications 
and N complex additions for each value of k. Therefore, because there are N values of X(k), computing an 
N-point DFT requires N* complex multiplications and additions. 

The basic strategy that is used in the FFT algorithm is one of "divide and conquer." which involves de- 
composing an N-point DFT into successively smaller DFTs. To see how this works, suppose that the length of 
x(n) is even (i.e., N is divisible by 2). If x(n) is decin~ared into two sequences of length N/2,  computing the 
N/2-point DFT of each of these sequences requires approximately ( N  12)' multiplications and the same number 
of additions. Thus, the two DFTs require 2 ( ~ / 2 ) '  = { N' multiplies and adds. Therefore, if it is possible to find 
the N-point DFT of s (n )  from these two N/2-point DFTS in fewer than N2/2  operations, a savings has been 
realized. 

7.2.1 Decimation-in-Time FFT 

The decimation-in-time FFT algorithm is based on splitting (decimating) x(n) into smaller sequences and finding 
X ( k )  from the DFTs of these decimated sequences. This section describes how this decimation leads to an efficient 
algorithm when the sequence length is a power of 2. 

Let x(n) be a sequence of length N = 2", and suppose that x(n) is split (decimated) into two subsequences, 
each of length N/2. As illustrated in Fig. 7-1, the first sequence, ~ ( I z ) ,  is formed from the even-index terms, 

and the second, h(n), is formed from the odd-index terms, 

h(n) = x(2n + 1) n = 0, I .  .. . ,  - N I  - 
2 

In terms of these sequences, the N -point DFT of x(n) is 

tr=O n even 11 odd 
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Because wiik = wik ,,, Eq. ( 7 . 2 )  may be written as 

Note that the first term is the N/2-point DFT of g ( n ) ,  and the second is the N 12-point DFT of h(n) :  

Although the N/2-point DFTs of g ( n )  and h ( n )  are sequences of length NL2, the periodicity of the complex 
exponentials allows us to write 

Therefore, X ( k )  may be computed from the N/2-point DFTs G ( k )  and H ( k ) .  Note that because 

and it is only necessary to form the products W ;  H ( k )  for k  = 0. 1, . . . , N/2 - 1 .  The complex exponentials 
multiplying H ( k )  in Eq. ( 7 . 3 )  are called twiddle factors. A block diagram showing the computations that are 
necessary for the first stage of an eight-point decimation-in-time FFT is shown in Fig. 7-2. 

If N/2  is even, g ( n )  and h ( n )  may again be decimated. For example, G ( k )  may be evaluated as follows: 

II=O II even n odd 
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Fig. 7-2. An eight-point decimation-in-time FFT algorithm after the first decimation. 

As before, this leads to 

where the first term is the N /4-point DFT of the even samples of ~ ( n ) ,  and the second is the N/4-point DFT of 
the odd samples. A block diagram illustrating this decomposition is shown in Fig. 7-3. If N is a power of 2, the 
decimation may be continued until there are only two-point DFTs of the form shown in Fig. 7-4. 

Fig. 7-3. Decimation of the four-point DFT into two two-point 
DFTs in the decimation-in-time FFT. 
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The basic computational unit of the FFT, shown in Fig. 7-5(a), is called a hurterjy. This structure may be 
simplified by factoring out a term W h  from the lower branch as illustrated in Fig. 7-5(h) .  The factor that remains 
is w:'~ = - 1. A complete eight-point radix-2 decimation-in-time FFT is shown in Fig. 7-6. 

(4 (b) 

Fig. 7-5. (a )  The butterfly, which is the basic computational clement of the FFT algorith-; 
(b )  A simplitied butterfly. with only one complex multiplication. 

- 1 -1 - 1 

Fig. 7-6. A complete eight-point radix-:! decrmation-in-lime FFT. 

Computing an N-point DFT using a radix-2 decimation-in-time FFT is much more efficient than calculating 
the DFT directly. For example, if N = 2", there are log, N = v stages of computation. Because each stage requires 
N/2  complex multiplies by the twiddle factors W h  and N complex additions. there are a total of 4 N logz N 
complex multiplications' and N log2 N complex additions. 

From the structure of the decimation-in-time FFT algorithm, note that once a butterfly operation has been 
performed on a pair of complex numbers, there is no need to save the input pair. Therefore, the output pair 
may be stored in the same registers as the input. Thus, only one array of size N is required, and it is said 
that the computations may be performed in place. To perform the computations in place, however, the input 
sequence x (n )  must be stored (or accessed) in nonsequential order as seen in Fig. 7-6.  The shufling of the input 
sequence that takes place is due to the successive decimations of .u(n). The ordering that results corresponds to a 
bit-reversed indexing of the original sequence. In other words, if the index n is written in binary form, the order 
in which in the input sequence must be accessed is found by reading the binary representation for n in reverse 
order as illustrated ill the table below for N = 8: 

 h he number of multiplications is actually a bit less than this because some of the twiddle factors are equal to I .  
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Binary 

Bit-Reversed 
Binary 

Alternate forms of FFT algorithms may be derived from the' decimation-in-time FFT by manipulating the 
flowgraph and rearranging the order in which the results of each stage of the computation are stored. For example, 
the nodes of the flowgraph may be rearranged so that the input sequence x(n) is in normal order. What is lost 
with this reordering, however, is the ability to perform the computations in place. 

7.2.2 Decimation-in-Frequency FFT 

Another class of FFT algorithms may be derived by decimating the output sequence X(k) into smaller and smaller 
subsequences. These algorithms are called decimation-in-frequency FFTs and may be derived as follows. Let 
N be a power of 2, N = 2". and consider separately evaluating the even-index and odd-index samples of X(k). 
The even samples are 

N - l  

X(2k) = x ( n ) ~ : ~  
n=O 

Separating this sum into the first N/2 points and the last N/2  points, and using the fact that w $ ~  = wnk .I,? this 
becomes 

With a change in the indexing on the second sum we have 

(n+: )k 
Finally, because WNI2 = ~ $ 5 ,  

which is the N /2-point DFT of the sequence that is formed by adding the first N/2 points of x(n) to the last N 12. 
Proceeding in the same way for the odd samples of X(k) leads to 

A flowgraph illustrating this first stage of decimation is shown in Fig. 7-7. As with the decimation-in-time FFT, 
the decimation may be continued until only two-point DFTs remain. A complete eight-point decimation-in- 
frequency FFT is shown in Fig. 7-8. The complexity of the decimation-in-frequency FFT is the same as the 
decimation-in-time, and the computations may be performed in place. Finally, note that although the input 
sequence x(n) is in normal order, the frequency samples X(k) are in bit-reversed order. 
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Fig. 7-7. An eight-point decimation-in-frequency FFT algorithm af- 
ter the first stage of' decimation. 

- 1 - 1 

Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT. 

7.3 FFT ALGORITHMS FOR COMPOSITE N 

It is not always possible to work with sequences whose length is a power of 2. However, efficient computation 
of the DFT is still possible if the sequence length may be written as a product of factors. For example, suppose 
that N may be factored as follows: 

N = N , . N 2  

We then decompose x ( n )  into N2 sequences of length N I  and arrange these sequences in an array as follows: 
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EXAMPLE 7.3.1 For a sequence of length N = 15. with N I  = 3 and N2 = 5, the sequence x ( n )  may be decimated into 
five sequences of length three, and these sequences may then be arranged in a two-dimensional array as follows: 

Alternatively, if we let N I  = 5 and N 2  = 3, ~ ( n )  may be decimated into three sequences of length five and arranged in a 
two-dimensional array of three rows and five columns, 

By defining index maps for n and k as follows, 

the N -point DFT may be expressed as 

Note that the inner summation, 

is the NI  -point DFT of the sequence x(N2n I + n2), which is row n2 of the two-dimensional array in Eq. (7.5). 
Computing the N I -point DFT of each row of the array produces another array, 

consisting of the complex numbers G(n2, k~ ). Note that because the data in row n2 is not needed after the NI-point 
DFT of x(N2n I + n2) is computed, G(n2, k l  ) may be stored in the same row (i.e., the computations may be 
performed in place). 
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The next step in the evaluation of X ( k )  in Eq. (7.7) is to multiply by the twiddle factors w,$"*: 

The final step is to compute the N2-point DFT of the columns of the array ?;(n2, k l ) :  

The DFT coefficients are then read out row-wise from the two-dimensional array: 

A pictorial representation of this decomposition is shown in Fig. 7-9 for N = 15. 

Fig. 7-9. Computation of a 15-point DFT with N I  = 3 and N2 = 5 using 3-point and 5-point DFTs. 

EXAMPLE 7.3.2 Suppose that we want to compute the 12-point DFT of x ( n ) .  With N I  = 3 and N 2  = 4, the first step is 
to form a two-dimensional array consisting of N I  = 3 columns and N2 = 4 rows, 

and compute the DFT of each row, 

For example, the DFT of the first row is 
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The next step is to multiply each term by the appropriate twiddle factor. The array of factors is 

I [ ;  ;I $1 
w;: w:, 

This produces the array C(n2 ,  k , ) :  

[CHAP. 7 

The final step is to compute the DFT of each column: 

This results in the Howgraph shown in Fig. 7-10. Note that because N 2  can be factored, NZ = 2 x 2, the four-point DFTs 
of the columns of G(nz, k , )  may be evaluated using two-point DFTs. For example, if the first column is arranged in a 
two-dimensional array, 

after taking the two-point DFTs of the rows, the terms are multiplied by the twiddle factors 

and then the two-point DFTs of the columns are computed. 

Up to this point, we have only assumed that N could be factored as N = N I  . NZ I t  is possible, however, that 
either or both of these factors could be factored further. What is important for the FFT algorithm to be efficient 
is that N be a highly composite number: 

In this case, it is possible to define multidimensional index maps for ti and k as follows, 

and the development of the FFT algorithm proceeds as described above. If N = R" ,  the corresponding FFT 
algorithm is called a Radix-R algorithm. If the factors are not equal, the FFT is called a mixed-radix algorithm. 
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Fig. 7-10. FFT algorithm for N = 12. 

7.4 PRIME FACTOR FFT 

For some values of N ,  with the appropriate index mapping, it is possible to completely eliminate the twiddle 
factors. These mapping have the form 

where A,  B,  C, and D are integers, and ((.))N denotes the evaluation of Ihe index modulo N. If N = N I  . N?. 
and if NI and N2 are relativelyprime (i.e., they have no common factors), the twiddle factors may be eliminated 
with the appropriate values for A,  B , C, and D. The requirements on these numbers are as follows: 

I. All numbers between 0 and N - I for n and k must appear uniquely as n I and !I2 are varied and as kl 
and k2 are varied. 

2. The numbers A,  B ,  C, and D are such that 

(Anl  + R n r ) t C k ~ f  Dk2) - W;:kl WnzP 
W N  - ,v 2 

The second condition requires that 

Finding a set of numbers that satisfies these two conditions falls in the domain of number- theory, which will not 
be considered here. However, one set of numbers that satisfies these conditions is 

where ( ( N ; ' ) ) ~ ~  denotes the multiplicative inverse of NI modulo N2. For example, if N = 12 with N I  = 3 
and Nz = 4, ( ( 4 ~ ' ) ) ~  = I because ((4 . = 1 and ((3-1))4 = 3 because ((3 . 3))3 = I .  
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EXAMPLE 7.4.1 A 12-point prime factor algorithm with N I  = 3 and N2 = 4 is as follows. With A = N z  = 4 and 
B = N I  = 3 ,  and with C = N ~ ( ( N ~ ' ) ) N ,  = 4 and U = N I ( ( ~ ; l ) ) N z  = 9. Thus, the index mappings for n and k are 

and the two-dimensional array representation for the input is 

The representation for X ( k )  is therefore 

Thus, the DFT is evaluated by lint computing the three-point DFT of each row of the input array, followed by the four-point 
DFT of each column. The following figure shows how the four-point DFTs are interconnected to the three-point DFTs. 

Because a 4-point DFT does not require any multiplications (see Prob. 7.1 1 ), and because each 3-point DFT requires only 4 
complex multiplications, the 12-point prime factor algorithm requires 16 complex multiplies. For a mixed-radix FFT, there 
are, in addition, six twiddle factors. The cost for eliminating these six multiplications is an increase in complexity in indexing 
and in programming. 
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Solved Problems 

Radix-2 FFT Algorithms 

7.1 Assume that a complex multiply takes 1 p s  and that the amount of time to compute a DFT is determined 
by the amount of time it takes to perform all of the multiplications. 

(a) How much time does it take to compute a 1024-point DFT directly? 

(b) How much time is required if an FFT is used? 

(c) Repeat parts (a) and (b) for a 4096-point DFT. 

(a) Including possible multiplications by f I, computing an N-point DFT directly requires N' complex multipli- 
cations. If it takes I p s  per complex multiply, the direct evaluation of a 1024-point DFT requires 

(b) With a radix-2 FFT, the number of complex multiplications is approximately (N/2) log, N which, for N = 1024, 
is equal to 5 120. Therefore, the amount of time to compute a 1024-point DFT using an FFT is 

(c) If the length of the DFT is increased by a factor of 4 to N = 4096, the number of multiplications necessary 
to compute the DFT directly increases by a factor of 16. Therefore, the time required to evaluate the DFT 
directly is 

1 ~ ~ 7 .  = 16.78 S 

If, on the other hand, an FFT is used, the number of multiplications is 

2,048 . log, 4,096 = 24,576 

and the amount of time to evaluate the DFT is 

7.2 A complex-valued sequence x ( n )  of length N = 8 192 is to be convolved with a complex-valued sequence 
h ( n )  of length L = 5 12. 

(a) Find the number of (complex) multiplications required to perform this convolution directly. 

(6)  Repeat part (a) using the overlap-add method with 1024-point radix-2 decimation-in-time FFTs to 
evaluate the convolutions. 

(a) If .r(n) is of length N = 8192, and h(n) of length L = 512, performing the convolution directly requires 

complex multiplications. 

(b) Using the method of overlap-add with 1024-point FFTs. the number of multiplications is as follows. Because 
h(n) is of length 512, we may segment x(n) into sequences .r,(n) of length N = 512 so that the 1024-point 
circular convolutions of h(n) with x,(n) will be the same as linear convolutions (although we could use sections 
of length 5 13, this does not result in any computational savings). With the length of x(n)  being equal to 8 192, this 
means that we will have 16 sequences of length 512. Therefore, to perform the convolution, we must compute 
17 DFTs and 16 inverse DFTs. In addition, we must form the products Y , ( k )  = H (k)X,(k) for i = 1, 2, . . . . 16. 
Thus, the total number of complex multiplicalions is approximately 

which is about 4.5 percent of the number of complex multiplies necessary to perform the convolution directly. 
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7.3 Speech that is sampled at a rate of I0 kHz is to be processed in real time. Part of the computations 
required involve collecting blocks of 1024 speech values m d  computing a 1024-point DFT and a 1024- 
point inverse DFT. If it takes Ips  for each real multiply. how much time remains for processing the data 
after the DFT and the inverse DFT are computed? 

With a 10-kHz sampling rate, a block of 1024 samples is collected every 102.4 ms. With a radix-2 FFT, the number 
of complex multiplications for a 1024-point DFT is approximately 5 12 log, 1024 = 5120. With a complex multiply 
consisting of four real multiphes. this means that we have to perform 5.120. 4 = 20,480 real multiplies for the DFT 
and the same number for the inverse DFT. With 1 ps per multiply, this will take 

which leaves 61.44 ms for any additional processing. 

7.4 Sampling a continuous-time signal x l , ( t )  for I s generates a sequence of 4096 samples. 

(a)  What is the highest frequency in .rl ,(t)  if it was sampled without aliasing? 

(b) If a 4096-point DFT of the sampled signal is computed, what is the frequency spacing in hertz 
between the DFT coefficients'? 

(c) Suppose that we are only interested in the DFT samples that correspond to frequencies in the range 
200 5 f 5 300 Hz. How many complex multiplies are required to evaluate these values computing 
the DFT directly, and how many are required if a decimation-in-time FFT is used? 

( d )  How many frequency samples would be needed in order for the FFT algorithm to be more efficient 
than evaluating the DFT directly? 

(a) Collecting 4096 samples in I s means that Ihe sampling frequency is ,ti = 4096 Hz. If . r , ( ~ )  is to be sampled 
without aliasing, the sampling frequency must be a1 least twice the highest frequency in .r,(1). Therefore, la( / )  

should have no frequencies above fi, = 2048 Hz. 

(h)  With a 4096-point DFT. we are sampling X ( e l " )  at 4096 equally spaced frequencies between 0 and 2 ~ r ,  which 
corresponds to 4096 frequency samples over the range 0 5 ,f 5 4096 Hz. Therefore, the frequency spacing is 
Af = IHz .  

(c) Over the frequency range from 200 to 300 Hz  we have 101 DFT samples. Because it takes 4096 complex 
multiplies to evaluate each DFT coefficient, the number of multiplies necessary toevaluate only these frequency 
samples is 

On the other hand, the number of multiplications required if an FFT is used is 

Therefore, even though the FFT generates all of the frequency samples in the range 0 5 ,f 5 4096 Hz, it is 
more efficient than evaluating these 101 samples directly. 

(d) An N-point FFT requires N log, N complex multiplies. and to evaluate M DFT coefficients directly requires 
M . N complex multiplica;ions. Therefore, the FFT will be more efticient in finding these M samples if 

With N = 4096, the number of frequency samples is M = 6 .  

7.5 Because some of the f N log, N multiplications in the decimation-in-time and decimation-in-frequency 
FFT algorithms are multiplications by f I .  it is possible to more efticiently implement these algorithms 
by writing programs that specitically excluded these multiplications. 

(a)  How many multiplications are there in an eight-point decimation-m-time FFT if we exclude the 
multiplications by f I ?  
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(b)  Repeat part (a)  for a 16-point decimation-in-time FFT. 

(c) Generalize the results in parts (a) and (b)  for N = 2". 

(a )  For an eight-point decimation-in-time FFT, we may count the number of complex multiplications in the flow- 
graph given in Fig. 7-6. In the first stage of the FFT, there are no complex multiplications, whereas in the second 
stage, there are two multiplications by W:. Finally, in the third stage there are three multiplications by W x ,  w;, 
and W:.  Thus, there are a total of five complex multiplies. 

(b )  A 16-point DFT is formed from two &point DFTs as follows: 

where G ( k )  and H(k) are eight-point DFTs. There are eight butterflies in the last stage that produces X ( k )  
from G ( k )  and H(k). Because the simplified butterfly in Fig. 7-5(b)  only requires only one complex multiply, 
and noting that one of these is by WP, = 1, we have a total of seven twiddle factors. In addition, we have 
two 8-point FFTs, which require five complex multiplies each. Therefore. the total number of multiplies IS 
2 - 5 + 7 =  17. 

( c )  Let L(v)  be the number of complex multiplies required for a radix-2 FFT when N = 2". From parts (a) and (h) 
we see that L(3) = 5 and L(4) = 17. Given that an FFT of length N = 2"-' requires L(v - I) mul~iplies. for 
an FFT of length N = 2", we have an additional 2"-I butterflies. Because each butterfly requires one multiply. 
and because one of these multiplies is by W: = 1, the number of multiplies required for an FFT of length 
2" is 

Solving this recursion for L(v) ,  we have the following closed-form expression for L ( v ) :  

7.6 The FFT requires the multiplication of complex numbers: 

(a) Write out this complex multiplication, and determine how many real multiplies and real adds are 
required. 

(b) Show that the complex multiplication may also be performed as follows: 

and determine the number of real multiplies and adds required with this method. 

(a) The product of two complex number is 

which requires four real multiplies and three real adds. 

(h)  Expanding the expressions for q. we have 

as required. Similarly, for dl we have 

also as required. This approach only requires three multiplies and four adds. 
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7.7 The decimation-in-time and decimation-in-frequency FFT algorithms evaluate the DFT of a complex- 
valued sequence. Show how an N-point FFT program may be used to evaluate the N-point DFT of two 
real-valued sequences. 

As we saw in Prob. 6.18. the DFTs of two real-valued sequences may be found from one N-point DFT as follows. 
First, we form the N-point complex sequence 

After finding the N-point DFT of . r (n ) .  we extract X I ( k )  and X z ( k )  from X ( k )  by exploiting the symmetry of the 
DFT. Specifically. 

which is the conjugate symmetric part of X ( k ) .  and 

X ? ( k )  = t l X ( k )  - X * ( ( N  - k ) ) ~ ]  

which is the conjugate antisymmetric part of X ( k ) .  

7.8 Determine how a 2N-point DFT of a real-valued sequence may be computed using an N-point FFT 
algorithm. 

Let g ( n )  be a real-valued sequence of length 2N. From this sequence. we may form two real-valued sequences of 
length N as follows: 

From these two sequences, we form the complex sequence 

Computing the N-point DFT of . r ( n ) .  we niay then extract the N-point DFTs of x , ( n )  and x 2 ( n )  as follows 
(see Prob. 7 . 7 ) :  

x ~ ( k )  = i [ ~ ( k )  + X * ( ( N  - k ) ) ~ ]  

x ~ k )  = ; [ x ( k )  - x * ( ( N  - k ) ) N  I 

Now all that is left to do is to relate the 2N-point DFT of g ( n )  to the N-point DFTs X l ( k )  and X , ( k ) .  Note that 

Therefore, G ( k )  = X l ( k ) +  w ; , ~ z ( k )  k  =0, 1 ,  .... 2N - 1 

where the periodicity of X l ( k )  and X 2 ( k )  is used to evaluate G ( k )  for N < k  < 2N, that is, 

X l ( k )  = X l ( k  + N )  X z ( k )  = X 2 ( k  + N) 

7.9 Given an FFT program to find the N-point DFT of a sequence, how may this program be used to find 
the inverse DFT? 

As we saw in Prob. 6.9, we may tind . r ( n )  by first using the DFT program to evaluate the sum 
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which is the DFT of X*(k). Then, x(n) may be found from x(n) as follows: 

Alternatively, we may find the DFT of X(k), 

and then extract x(n) as follows: 

7.10 Let x ( n )  be a sequence of length N with 

where N is an even integer. 

(a) Show that the N-point DFT of x ( n )  has only odd harmonics. that is. 

X ( k )  = 0 k even 

(b) Show how to find the N-point DFT of x ( n )  by finding the N/2-point DFT of an appropriately 
modified sequence. 

(a) The N-point DFT of x(n) is 

Because x(n)  = -x(n + N/2), if k is even, each term in the sum is zero, and X(k) = 0 fork = 0 , 2 , 4 ,  . . .. 

(b) In the first stage of a decimation-in-frequency FFT algorithm, we separately evaluate the even-index and odd- 
index san~ples of X(k). If X(k) has only odd harmonics, the even samples are zero, and we need only evaluate 
the odd samples. From Eq. (7.4) we see that the odd samples are given by 

With x ( n )  = -x(n + N/2) this becomes 

which is the N/2-point DFT of the sequence y(n) = 2WE;x(n). Therefore, to find the N-point DFT of x(n), 
we multiply the first N/2  points of x(n) by 2W;. 

and then compute the N/2-point DFT of y(nh The N/2-point DFT of x(n)  is then given by 
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FFT Algorithms for Composite N 

7.11 When the number of points in the DFT is a power of 4 ,  we  can use a radix-2 FFT algorithm. However, 
when N = 4", it is more efficient to use a radix-4 FFT algorithm. 

(a) Derive the r a d i x 4  decimation-in-time FFT algorithm when N = 4". 

(b) Draw the structure for the butterfly in the radix-4 FFT, and compare the number of complex multiplies 
and adds with a radix-4 F F T  to a radix-2 FFT. 

(a) To derive a decimation-in-time radix-4 FFT. let NI = N/4 and N2 = 4. and define the index maps 

We then express X ( k )  using the decomposition given in Eq. (7 .7)  with NI = N/4 and N2 = 4, 

The inner summation. 

is the N/4-point DFT of the sequence x(4nI + n2), and the outer summation is a 4-point DFT, 

Since W4 = - j, these 4-point transforms have the form 

for kl = 0. 1 ,  2 . 3 ,  and n2 = 0, I ,  . . . . (N/4) - 1. If N2 = N/4 is divisible by 4, then the process is repeated. 
In this way, we generate v = Iog, N stages with N/4 butterflies in each stage. 

(b) The 4-point butterflies in the radix-4 FFT perform operations of the form 



CHAP. 71 THE FAST FOURIER TRANSFORM 

With 

Since multiplications by i j only requires interchanging real and imaginary parts and possibly changing a sign 
bit, then each 4-point butterfly only requires 3 complex multiplications. With v = log, N stages, and N/4 
butterflies per stage, the number of complex multiplies for a DFT of length N = 4" is 

N 3 N 
3 . - log, N = - log, N 

4 8 
For a radix-:! decimation-in-time FFT, on the other hand, the number of multiplications is 

N 
- log, N 
2 

Therefore, the number of multiplications in a radix-4 FFT is & times the number in a radix-2 FFT. 

7.12 Suppose that we would like to find the N-point DFT of a sequence where N is a power of 3, N = 3". 

(a )  Develop a radix-3 decimation-in-time FFT algorithm, and draw the corresponding flowgraph for 
N = 9 .  

(h )  How many multiplications are required for a radix-3 FFT? 

(c) Can the computations be performed in place? 

(a) A radix-3 decimation-in-time FFT may be derived in exactly the same way as a radix-2 FFT. First, x ( n )  is 
decimated by a factor of 3 to form three sequences of length Nj3: 
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Expressing the N-point DFT in terms of these sequences, we have 

Since w$' = W k 3 ,  then 

Note that the first term is the N/3-point DFT o f f  (n), the second is W i  times the N/3-point DFT of g(n), and 
the third is w;' times the N 13-point DFT of h(n), 

We may continue decimating by factors of 3 until we are left with only 3-point DFTs. The flowgraph for a 
9-point decimation-in-time FFT is shown in Fig. 7- 1 I .  Only one of the 3-point butterflies is shown in the second 
stage in order to allow for the labeling of the branches. The complete flowgraph is formed by replicating this 
3-point butterfly up by one node, and down by one node, and changing the branch multiplies to their appropriate 
values. 

4 7 )  

4 5 )  

0 X(8) 
WJ" 

Fig. 7-11. Flowgraph for a9-point decimation-in-time FFT (only one butterfly in the second 
stage is shown). 
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(b) If N = 3". then there are v stages in the radix-3 FFT. The general form of each 3-point butterfly, shown in the 
second stage of the flowgraph in Fig. 7-1 1, requires six multiplies (some require fewer if we do not consider 
multiplications by f I). Since there are N / 3  butterflies in each stage, then the total number of multiplications is 

6N log, N 

( c )  Yes, the computations may be performed in place. 

7.13 Derive a radix-3 decimation-in-frequency FFT for N = 3" a.nd draw the corresponding flowgraph for 
N =9.  

As with the radix-2 decimation-in-frequency FFT, with N =3",  we separately evaluate the indices for which 
((k))3 = 0, ((k))3 = I ,  and ((k))3 = 2. For ((k))3 = 0 (i.e., k is a multiple of 3), 

Separating this sum into the first N / 3  points, the second N/3  points, and the last N / 3  points, and using the fact that 
.,, , this becomes WZk = wnk 

With a change in the indexing in the second and third sums, we have 

"+ $ n+ y 
Finally, because WNi, = W:/,, and WN13 = Wi13, 

which is the N/3-point DFT of the sequence in brackets. 
Proceeding in the same way for the samples X(3k + I ) ,  we have 

Finally, for the samples X(3k + 2) we have 
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The flowgraph for a nine-point decimation-in-frequency FFT is shown below. 

7.14 Suppose that we have a number of eight-poin~ decimation-in-time FFT chips. How could these chips be 
used to compute a 24-point DFT? 

A 24-point DFT is defined by 

Decimating x(n) by a factor of 3, we may decompose this DFT into three %point DFTs as follows: 

Therefore, if we form the three sequences 

and use the 8-point FFT chips to find the DFTs F(k),  G(k), and H(k),  the 24-point DFT of x ( n )  may be found by 
combining the outputs of the 8-point FFTs as follows: 

Prime Factor FFT 

7.15 Find the index maps for a 21 -point prime factor FFT with N I  = 7 and N 2  = 3. HOW many multiplications 
are required compared to a 32-point radix-2 decimation-in-time FFT? 
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For a 21-point prime factor FFT with NI  = 7 and N 2  = 3, we sel A = N2 = 3 and B = NI  = 7. Then, with 
C = N~((N;' ))N, = 15 and D = N ~ ( (  N = 7, we have the following index mappings: 

Thus, the two-dimensional array representation for the input is 

x(7) ~ ( 1 0 )  ~ ( 1 3 )  ~ ( 1 6 )  ~ ( 1 9 )  .x(l) 
2 x(14) ~ ( 1 7 )  ~ ( 2 0 )  s ( 2 )  s ( 5 )  ~ ( 8 )  . u ( l  I )  

and the two-dimensional array for the output is 

With the prime factor FFT, there are no twiddle factors. Therefore, the only multiplications necessary are those 
required to compute the three 7-point DFTs, and the seven 3-point DFTs. Because each 3-point DFT requires 6 com- 
plex multiplies, and each 7-point DFT requires 42, the number of multiplies for a 2 1-point prime factor FFT is 
(7)(6) + (3)(42) = 168. For a 32-point radix-2 FFT. on the other hand. we require 

complex multiplies. Therefore. it would be more efficient to pad a 21-point sequence with zeros and compute a 32- 
point DFT. The increasedefficiency is a result of the fact that 32 = 2' is a much more composite number than 2 1 = 7.3. 

7.16 Suppose that we would like to compute a 15-point DFT of a sequence x ( n ) .  

(a )  Using a mixed-radix FFT with N I  = 5 and N2 = 3, the DFT is decomposed into two stages, with 
the first consisting of three 5-point DFTs, and the second stage consisting of five 3-point DFTs. 
Make a sketch of the connections between the five- and three-point DFTs, indicating any possible 
twiddle factors, and the order of the inputs and outputs. 

(b) Repeat part (a )  for the prime factor algorithm with N I  == 5 and N 2  = 3, and determine how many 
complex multiplies are saved with the prime factor algorithm. 

(a) Using a mixed-radix FFT with NI  = 5 and N2 = 3, the index mappings for n and k are as follows: 

Thus, the two-dimensional array representation for the input is 
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After the five-point DFT of each row in the data array is computed. the resulting complex array is multiplied 
by the array of twiddle factors: 

The last step then involves computing the three-point DFT of each column. This produces the output array 
X ( k ) ,  which is 

The connections between the three- and five-point DFTs are shown in the following figure, along with the eight 
twiddle factors: 

(h)  Using the prime factor algorithm with N I  = 5 and N2 = 3, we set A = N2 = 3 and B = N ,  = 5. Then, with 
C = N ~ ( ( N , ' ) ) N ,  = 6 and D = N ~ ( ( N ; ' ) ) ~ ,  = 10, we have the following index mappings for n and k :  
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The two-dimensional array representation for the input is 

and for the output array we have 

1 2 3 4 

The interconnections between the five- and three-point DFTs are the same as in the mixed-radix algorithm. 
However, there are no twiddle factors, and the ordering of the input and output arrays is different. The 15-point 
prime fuctor algorithm is diagrammed in the figure below. 

The savings with the prime factor algorithm over the mixed-radix FFT are the eight complex multiplies by the 
twiddle factors. 

Supplementary Problems 

Radix-2 FFT Algorithms 

7.17 Let x ( n )  be a sequence of length 1024 that is to be convolved with a sequence h ( n )  of length L. For what values of 
L is i t  more efficient to perform the convolution directly than it is to perform the convolution by taking the inverse 
DFT of the product X (k)H ( k )  and evaluating the DFTs using a radix-2 FFT algorithm? 
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7.18 Suppose that we have a 1025-point data sequence (1 more than N = 2"). Instead of discarding the final value, we 
zero pad the sequence to make it of length N = 2" so that we can use a radix-2 FFT algorithm. (a) How many 
multiplications and additions are required to compute the DFT using a radix-2 FFT algorithm? (b) How many 
multiplications and additions would be required to compute a 1025-point DFT directly? 

FFT Algorithms for Composite N 

7.19 In a radix-3 decimation-in-time FFT, how is the input sequence indexed? 

7.20 How many complex multiplications are necessary in a radix-3 decimation-in-frequency FFT? 

7-21 Consider the FFT algorithm given in Example 7.3.2. ( a )  How many multiplications and additions are required to 
compute a 12-point DFT? (h) How many multiplications and additions are necessary if the 12-point DFT is computed 
directly? 

Prime Factor FFT 

7.22 Find the index maps for a 99-point prime factor FFT with N I  = I I and N2 = 9. 

7.23 How many complex multiplications are required for a 12-point prime factor FFT with N, = 4 and N3 = 3 if we do 
not count multiplications by + I  and + j? 

7.24 How many twiddle factors are there in a 99-point prime factor FFT with N  I = I 1 and N2 = 9? 

7.25 How many complex multiplications are required for a 15-point prime factor FFT if we do not count multiplications 
by & I ?  

Answers to Supplementary Problems 

7.18 (a) 1 1.264. (b) 1,050,625. 

7.19 The index for x(n) is expressed in ternary form, and then the ternary digits are read in reverse order. 

7.20 The same as a decimation-in-time FFT, which is 2N log, N .  

7.21 (a) Each 4-point DFT requires no multiplies and 12 adds, and each 3-point DFT requires 6 multiplies and 6 adds. With 
6 twiddle factors, there are 6 + (4)(6) = 30 multiplies and (4)(6) + (3)(12) = 60 adds. (b) 144 multiplies and 132 adds. 

7.22 n = 9 n I  + 1 In2, and k = 45kl + %k2. 

7.23 24. 

7.24 None. 

7.25 90. 




