
8
Input–Output Design and Organization

Having considered the fundamental concepts related to instruction set design,

assembly language programming, processor design, and memory design, we now

turn our attention to the issues related to input output (I/O) design and organiz-

ation. It should be emphasized at the outset that I/O plays a crucial role in any

modern computer system. Therefore, a clear understanding and appreciation of

the fundamentals of I/O operations, devices, and interfaces are of great importance.

Input output (I/O) devices vary substantially in their characteristics. One dis-

tinguishing factor among input devices (and also among output devices) is their

data processing rate, defined as the average number of characters that can be pro-

cessed by a device per second. For example, while the data processing rate of an

input device such as the keyboard is about 10 characters (bytes)/second, a scanner
can send data at a rate of about 200,000 characters/second. Similarly, while a laser

printer can output data at a rate of about 100,000 characters/second, a graphic

display can output data at a rate of about 30,000,000 characters/second.
Striking a character on the keyboard of a computer will cause a character (in the

form of an ASCII code) to be sent to the computer. The amount of time passed

before the next character is sent to the computer will depend on the skill of the

user and even sometimes on his/her speed of thinking. It is often the case that the

user knows what he/she wants to input, but sometimes they need to think before

touching the next button on the keyboard. Therefore, input from a keyboard

is slow and burst in nature and it will be a waste of time for the computer to

spend its valuable time waiting for input from slow input devices. A mechanism

is therefore needed whereby a device will have to interrupt the processor asking

for attention whenever it is ready. This is called interrupt-driven communication

between the computer and I/O devices (see Section 8.3).

Consider the case of a disk. A typical disk should be capable of transferring data

at rates exceeding several million bytes/second. It would be a waste of time to trans-

fer data byte by byte or even word by word. Therefore, it is always the case that data

is transferred in the form of blocks, that is, entire programs. It is also necessary

to provide a mechanism that allows a disk to transfer this huge volume of data

without the intervention of the CPU. This will allow the CPU to perform other

mywbut.com

1

useful operation(s) while a huge amount of data is being transferred between the disk

and the memory. This is the essence of the direct memory access (DMA) mechanism

discussed in Section 8.4.

We begin our discussion by offering some basic concepts in Section 8.1.

8.1. BASIC CONCEPTS

Figure 8.1 shows a simple arrangement for connecting the processor and the memory

in a given computer system to an input device, for example, a keyboard and an output

device such as a graphic display. A single bus consisting of the required address, data,

and control lines is used to connect the system’s components in Figure 8.1.

The way in which the processor and the memory exchange data has been

explained in Chapters 6 and 7. We are here concerned with the way the processor

and the I/O devices exchange data. It has been indicated in the introduction part

that there exists a big difference in the rate at which a processor can process infor-

mation and those of input and output devices. One simple way to accommodate this

speed difference is to have the input device, for example, a keyboard, deposit the

character struck by the user in a register (input register), which indicates the avail-

ability of that character to the processor. When the input character has been taken by

the processor, this will be indicated to the input device in order to proceed and input

the next character, and so on. Similarly, when the processor has a character to output

(display), it deposits it in a specific register dedicated for communication with the

graphic display (output register). When the character has been taken by the graphic

display, this will be indicated to the processor such that it can proceed and output the

next character, and so on. This simple way of communication between the processor

and I/O devices, called I/O protocol, requires the availability of the input and

output registers. In a typical computer system, there is a number of input registers,

each belonging to a specific input device. There is also a number of output registers,

System Bus

Processor Memory

Output Device
(Graphic Display)

Input Device
(Keyboard)

Figure 8.1 A single bus system

mywbut.com

2

each belonging to a specific output device. In addition, a mechanism according to

which the processor can address those input and output registers must be adopted.

More than one arrangement exists to satisfy the abovementioned requirements.

Among these, two particular methods are explained below.

In the first arrangement, I/O devices are assigned particular addresses, isolated

from the address space assigned to the memory. The execution of an input instruc-

tion at an input device address will cause the character stored in the input register of

that device to be transferred to a specific register in the CPU. Similarly, the

execution of an output instruction at an output device address will cause the char-

acter stored in a specific register in the CPU to be transferred to the output register

of that output device. This arrangement, called shared I/O, is shown schematically

in Figure 8.2. In this case, the address and data lines from the CPU can be shared

between the memory and the I/O devices. A separate control line will have to be

used. This is because of the need for executing input and output instructions. In a

typical computer system, there exists more than one input and more than one

output device. Therefore, there is a need to have address decoder circuitry for

device identification. There is also a need for status registers for each input and

output device. The status of an input device, whether it is ready to send data to

the processor, should be stored in the status register of that device. Similarly, the

status of an output device, whether it is ready to receive data from the processor,

should be stored in the status register of that device. Input (output) registers,

status registers, and address decoder circuitry represent the main components of

an I/O interface (module).

Address Bus

Data Bus

Memory Control Lines

Input Device(s) Control Lines

Output Device(s) Control Lines

Processor Memory

Output Device
(Graphic Display)

Input Device
(Keyboard)

Figure 8.2 Shared I/O arrangement

mywbut.com

3

The main advantage of the shared I/O arrangement is the separation between the

memory address space and that of the I/O devices. Its main disadvantage is the need

to have special input and output instructions in the processor instruction set. The

shared I/O arrangement is mostly adopted by Intel.

The second possible I/O arrangement is to deal with input and output registers as

if they are regular memory locations. In this case, a read operation from the address

corresponding to the input register of an input device, for example, Read Device 6, is

equivalent to performing an input operation from the input register in Device #6.

Similarly, a write operation to the address corresponding to the output register of

an output device, for example, Write Device 9, is equivalent to performing an

output operation into the output register in Device #9. This arrangement is called

memory-mapped I/O. It is shown in Figure 8.3.

The main advantage of the memory-mapped I/O is the use of the read and write

instructions of the processor to perform the input and output operations, respectively.

It eliminates the need for introducing special I/O instructions. The main disadvantage

of the memory-mapped I/O is the need to reserve a certain part of the memory address

space for addressing I/O devices, that is, a reduction in the available memory address

space. The memory-mapped I/O has been mostly adopted by Motorola.

8.2. PROGRAMMED I/O

In this section, we present the main hardware components required for communi-

cations between the processor and I/O devices. The way according to which such

Address Bus

Data Bus

Control Lines

Processor Memory

Output Device
(Graphic Display)

Input Device
(Keyboard)

Figure 8.3 Memory mapped I/O arrangement

mywbut.com

4

communications take place (protocol) is also indicated. This protocol has to be pro-

grammed in the form of routines that run under the control of the CPU. Consider, for

example, an input operation from Device 6 (could be the keyboard) in the case of

shared I/O arrangement. Let us also assume that there are eight different I/O
devices connected to the processor in this case (see Fig. 8.4).

The following protocol steps (program) have to be followed:

1. The processor executes an input instruction from device 6, for example,

INPUT 6. The effect of executing this instruction is to send the device

number to the address decoder circuitry in each input device in order to ident-

ify the specific input device to be involved. In this case, the output of the deco-

der in Device #6 will be enabled, while the outputs of all other decoders will

be disabled.

2. The buffers (in the figure we assumed that there are eight such buffers) holding

the data in the specified input device (Device #6) will be enabled by the output

of the address decoder circuitry.

3. The data output of the enabled buffers will be available on the data bus.

Figure 8.4 Example eight I/O device connection to a processor

mywbut.com

5

4. The instruction decoding will gate the data available on the data bus into the

input of a particular register in the CPU, normally the accumulator.

Output operations can be performed in a way similar to the input operation

explained above. The only difference will be the direction of data transfer, which

will be from a specific CPU register to the output register in the specified output

device. I/O operations performed in this manner are called programmed I/O.
They are performed under the CPU control. A complete instruction fetch, decode,

and execute cycle will have to be executed for every input and every output oper-

ation. Programmed I/O is useful in cases whereby one character at a time is to be

transferred, for example, keyboard and character mode printers. Although simple,

programmed I/O is slow.

One point that was overlooked in the above description of the programmed I/O is

how to handle the substantial speed difference between I/O devices and the pro-

cessor. A mechanism should be adopted in order to ensure that a character sent to

the output register of an output device, such as a screen, is not overwritten by the

processor (due to the processor’s high speed) before it is displayed and that a char-

acter available in the input register of a keyboard is read only once by the processor.

This brings up the issue of the status of the input and output devices. A mechanism

that can be implemented requires the availability of a Status Bit (Bin) in the interface

of each input device and Status Bit (Bin) in the interface of each output device.

Whenever an input device such as a keyboard has a character available in its

input register, it indicates that by setting Bin 1. A program in the processor can

be used to continuously monitor Bin. When the program sees that Bin 1, it will

interpret that to mean a character is available in the input register of that device.

Reading such character will require executing the protocol explained above. When-

ever the character is read, then the program can reset Bin 0, thus avoiding multiple

read of the same character. In a similar manner, the processor can deposit a character

in the output register of an output device such as a screen only when Bout 0. It is

only after the screen has displayed the character that it sets Bout 1, indicating to

the program that monitors Bout that the screen is ready to receive the next character.

The process of checking the status of I/O devices in order to determine their readi-

ness for receiving and/or sending characters, is called software I/O polling. A hard-

ware I/O polling scheme is shown in Figure 8.5.

Figure 8.5 Hardware polling scheme

mywbut.com

6

In the figure, each of the N I/O devices has access to the interrupt line INR.

Upon recognizing the arrival of a request (called Interrupt Request) on INR, the pro-

cessor polls the devices to determine the requesting device. This is done through

thedLog2Nepolling lines. The priority of the requesting device will determine the

order in which addresses are put on the polling lines. The address of the highest priority

device is put first, followed by the next priority, and so on until the least priority device.

In addition to the I/O polling, two other mechanisms can be used to carry out I/O
operations. These are interrupt-driven I/O and direct memory access (DMA). These

are discussed in the next two sections.

8.3. INTERRUPT-DRIVEN I/O

It is often necessary to have the normal flow of a program interrupted, for example, to

react to abnormal events, such as power failure. An interrupt can also be used to

acknowledge the completion of a particular course of action, such as a printer indicating

to the computer that it has completed printing the character(s) in its input register and

that it is ready to receive other character(s). An interrupt can also be used in time-sharing

systems to allocate CPU time among different programs. The instruction sets of modern

CPUs often include instruction(s) that mimic the actions of the hardware interrupts.

When the CPU is interrupted, it is required to discontinue its current activity,

attend to the interrupting condition (serve the interrupt), and then resume its activity

from wherever it stopped. Discontinuity of the processor’s current activity requires

finishing executing the current instruction, saving the processor status (mostly in the

form of pushing register values onto a stack), and transferring control (jump) to what

is called the interrupt service routine (ISR). The service offered to an interrupt will

depend on the source of the interrupt. For example, if the interrupt is due to power

failure, then the action taken will be to save the values of all processor registers and

pointers such that resumption of correct operation can be guaranteed upon power

return. In the case of an I/O interrupt, serving an interrupt means to perform the

required data transfer. Upon finishing serving an interrupt, the processor should

restore the original status by popping the relevant values from the stack. Once the

processor returns to the normal state, it can enable sources of interrupt again.

One important point that was overlooked in the above scenario is the issue of ser-

ving multiple interrupts, for example, the occurrence of yet another interrupt while

the processor is currently serving an interrupt. Response to the new interrupt will

depend upon the priority of the newly arrived interrupt with respect to that of the

interrupt being currently served. If the newly arrived interrupt has priority less

than or equal to that of the currently served one, then it can wait until the processor

finishes serving the current interrupt. If, on the other hand, the newly arrived inter-

rupt has priority higher than that of the currently served interrupt, for example,

power failure interrupt occurring while serving an I/O interrupt, then the processor

will have to push its status onto the stack and serve the higher priority interrupt.

Correct handling of multiple interrupts in terms of storing and restoring the correct

processor status is guaranteed due to the way the push and pop operations are

mywbut.com

7

performed. For example, to serve the first interrupt, STATUS 1 will be pushed onto

the stack. Upon receiving the second interrupt, STATUS 2 will be pushed onto the

stack. Upon serving the second interrupt, STATUS 2 will be popped out of the stack

and upon serving the first interrupt, STATUS 1 will be popped out of the stack.

It is possible to have the interrupting device identify itself to the processor by

sending a code following the interrupt request. The code sent by a given I/O
device can represent its I/O address or the memory address location of the start

of the ISR for that device. This scheme is called vectored interrupt.

8.3.1. Interrupt Hardware

In the above discussion, we have assumed that the processor has recognized the

occurrence of an interrupt before proceeding to serve it. Computers are provided

with interrupt hardware capability in the form of specialized interrupt lines to the

processor. These lines are used to send interrupt signals to the processor. In the

case of I/O, there exists more than one I/O device. The processor should be pro-

vided with a mechanism that enables it to handle simultaneous interrupt requests

and to recognize the interrupting device. Two basic schemes can be implemented

to achieve this task. The first scheme is called daisy chain bus arbitration

(DCBA) and the second is called independent source bus arbitration (ISBA).

According to the DCBA (see Fig. 8.6a), I/O devices present their interrupt

requests to the interrupt request line INR (similar to the polling arrangement).

Upon recognizing the arrival of an interrupt request, the processor, through a

daisy chained grant line (GL), sends its grant to the requesting device to start com-

munication with the processor. The GL goes through all devices starting from the

first device nearer to the processor and going to the next device and so on until it

reaches the last device (Device #N). If Device #1 has put a request, then it will

hold the grant signal and start communication with the processor. If, on the other

hand, Device #1 has no interrupt request, it will pass the grant signal to device

#2, which will repeat the same procedure, and so on. In the case of multiple requests,

the DCBA arrangement gives highest priority to the device physically nearer to the

processor. The furthest device from the processor has the lowest priority.

According to the ISBA (see Fig. 8.6b), each I/O device has its own interrupt request

line, through which it can send its interrupt request, independent of the other devices.

Similarly, each I/O device has its own grant line, through which it receives the grant

signal for its request such that it can start communicating with the processor. I/O
device priority in the ISBA does not depend on the device location. A priority arbitra-

tion circuitry is needed in order to deal with simultaneous interrupt requests.

8.3.2. Interrupt in Operating Systems

When an interrupt occurs, the operating system gains control. The operating

system saves the state of the interrupted process, analyzes the interrupt, and

passes control to the appropriate routine to handle the interrupt. There are several

mywbut.com

8

types of interrupts, including I/O interrupts. An I/O interrupt notifies the operating

system that an I/O device has completed or suspended its operation and needs some

service from the CPU. To process an interrupt, the context of the current process

must be saved and the interrupt handling routine must be invoked. This process is

called context switching. A process context has two parts: processor context and

memory context. The processor context is the state of the CPU’s registers including

program counter (PC), program status words (PSWs), and other registers. The

memory context is the state of the program’s memory including the program

and data. The interrupt handler is a routine that processes each different type of

interrupt.

The operating system must provide programs with save area for their contexts. It

also must provide an organized way for allocating and deallocating memory for the

interrupted process. When the interrupt handling routine finishes processing the inter-

rupt, the CPU is dispatched to either the interrupted process, or to the highest priority

ready process. This will depend on whether the interrupted process is preemptive or

nonpreemptive. If the process is nonpreemptive, it gets the CPU again. First the con-

text must be restored, then control is returned to the interrupts process.

Figure 8.6 Interrupt hardware schemes. (a) Daisy chain interrupt arrangement

(b) Independent interrupt arrangement

mywbut.com

9

Figure 8.7 shows the layers of software involved in I/O operations. First, the pro-

gram issues an I/O request via an I/O call. The request is passed through to the I/O
device.When the device completes the I/O, an interrupt is sent and the interrupt handler
is invoked. Eventually, control is relinquished back to the process that initiated the I/O.

Example 1: 80386 Interrupt Architecture The 80�86 processors have just

two hardware interrupt pins. These are labeled INTR and NMI. NMI is a nonmaskable

interrupt, which means it cannot be blocked and the processor must respond to it. The

NMI input is usually reserved for critical system functions. The INTR input is a mask-

able interrupt request line between the CPU and the programmable interrupt controller

(8259A PIC). Interrupts on INTR can be enabled and disabled using the instructions

STI (set interrupt flag) and CLI (clear interrupt flag), respectively.

Interrupt handlers are called interrupt service routines (ISR). The address of each

interrupt service routine is stored in four consecutive memory locations in the inter-

rupt vector table (IVT). The IVT stores pointers to ISR for each type of interrupt.

When an interrupt occurs, an 8-bit type number is supplied to the processor,

which identifies the appropriate entry in this table.

When an interrupt is generated by a device, it goes to the PIC. Multiple interrupts

may be generated simultaneously. However, they are all buffered by the PIC. The

PIC decides which one of these interrupts should be forwarded to the CPU. To

inform the CPU that an outstanding interrupt is waiting to be processed, the PIC

sends an interrupt request (INTR) to the CPU, which then, at the appropriate

time, responds with an interrupt acknowledgment (INTA). At this time, PIC will

put an 8-bit interrupt type number associated with the device on the bus so that

the CPU can identify which interrupt handler to invoke. In the case when several

interrupts are pending, PIC will send next interrupt request to the CPU only after

it receives an end of interrupt command from the current ISR. Figure 8.8 shows

the simple protocol that is used to determine which ISR is to be invoked.

In the computer designs that used a single PIC (PC and XT), eight different inter-

rupt requests are allowed (IRQ0 IRQ7). Table 8.1 shows a list of standard interrupt

type numbers for typical devices. When AT was designed, a second PIC was added,

Hardware

Device Independent Software

User Processes

I/O Request I/O Reply

Perform I/O

Wakeup driver when I/O is done

Device Drivers

Interrupt Handlers

Figure 8.7 Layered I/O software

mywbut.com

10

increasing the number of interrupt inputs to 15. Figure 8.9 shows two PICS wired in

cascade. One PIC is designated as master and the other becomes the slave. As shown

in the figure, all slave interrupts are input via IRQ1 of the master. In general, eight

different slaves can be accommodated by a single PIC.

Example 2: ARM Interrupt Architecture ARM stands for Advanced RISC

Machines. ARM is a 16/32-bit architecture that is used for portable devices because
of its low power consumption and reasonable performance. Interrupt requests to the

ARM core are collected and controlled by the interrupt controller, which is called

ATIC. The interrupt controller provides an interface to the core and can collect

up to 64 interrupt requests.

The usual sequence of events for interrupts is as follows. Interrupts would be

enabled at the source (such as a peripheral), then enabled in the interrupt controller,

and finally, enabled to the core. When an interrupt occurs at the source, its signal is

routed to the interrupt controller then to the ARM core. In the interrupt controller,

the interrupt can be enabled or disabled to the core and can be assigned a priority

Device 8259A
PIC

CPUISR

1. IRQ# Interrupt

2. INTR

3. INTA

4. INT #

5. Invoke

8. Return

7. End Interrupt

6. Service

Figure 8.8 Interrupt handling in 80�86

TABLE 8.1 Standard IBM-PC Interrupt Type Numbers

for Typical Devices

Device

IRQ

no.

Interrupt

type number

Programmable interval timer 0 08H

Keyboard 1 09H

Cascading to the second PICs 2 Reserved

Serial communication port (COM2) 3 0BH

Serial communication port (COM1) 4 0CH

Fixed disk controller 5 0DH

Floppy disk controller 6 0EH

Parallel printer controller 7 0FH

mywbut.com

11

level. Once the interrupt request reaches the core, it will halt the core from its normal

processing routines to allow the interrupt request to be serviced.

Among the different interrupt requests that the ARM core can handle are IRQ and

FIQ requests. The IRQ (normal interrupt request) is used for general-purpose inter-

rupt handling. It has a lower priority than an FIQ (fast interrupt request) and is

masked out when an FIQ sequence is entered. The FIQ is used to support high-

speed data transfer or channel processes.

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

D0-D7

INT

Address bus

INTR

8259A Master

INTA

INTA

CS

SP/ EN

8259A Slave

IRQ8

IRQ9

IRQ10

IRQ11

IRQ12

IRQ13

IRQ14

IRQ15

D0-D7

INT

Address bus

INTA

CS

SP/ EN

Figure 8.9 Fifteen different interrupts are supported by two PICs wired in cascade

mywbut.com

12

Similar to the 80�86, the addresses of the interrupt handlers are stored in a vector

table, which is shown in Table 8.2. For example, when an IRQ is detected by the core,

it accesses address 0�18 of the vector table and executes the instruction loaded in that

address. Normally, the instruction found at 0�18 of the vector table is of the form:

LDR PC, IRQ Handler (load the address of the IRQ interrupt handler in the PC).

When an FIQ is detected by the core, it accesses address 0�1C of the vector table

and executes the instruction loaded in that address. Normally, the instruction found

at 0�1C of the vector table is of the form: LDR PC, FIQ Handler.

When an interrupt occurs, the following happens inside the core:

1. The CPSR (current program state register) is copied to the SPSR (saved pro-

gram status register) of the mode being entered.

2. The CPSR bits are set as appropriate to the mode being entered, the core is set

to ARM state, and the relevant interrupt disable flags are set.

3. The appropriate set of banked registers are banked in.

4. The return address is stored in the link register (of the relevant mode).

5. The PC is set to the relevant vector address.

For example, when an IRQ interrupt is detected, the ARM core enables SPSR irq as

the CPSR, enters the IRQ mode by setting the mode bits in the CSPR to 10010, dis-

ables Normal interrupts by setting the I bit in the CPSR, saves the address of the next

instruction R14 irq, and loads 0�18 into the PC. At address 0�18, an instruction

will load the address of the interrupt handler into the PC. Similarly, when an FIQ

interrupt is detected, the ARM core enables SPSR fiq as the CPSR, enters the

FIQ mode by setting the mode bits in the CSPR to 10001, disables Normal and

Fast interrupts by setting the F and I bits in the CPSR, saves the address of the

next instruction R14 fiq, and loads 0�1C into the PC. At address 0�1C, an instruc-

tion will load the address of the interrupt handler into the PC.

TABLE 8.2 Interrupt Vector Table

Exception type Mode Address

Reset Supervisor 0�00000000

Undefined instructions Undefined 0�00000004

Software interrupts (SWI) Supervisor 0�00000008

Prefetch abort Abort 0�0000000C

Data abort Abort 0�00000010

IRQ (Normal interrupt) IRQ 0�00000018

FIQ (Fast interrupt) FIQ 0�0000001C

mywbut.com

13

8.4. DIRECT MEMORY ACCESS (DMA)

The main idea of direct memory access (DMA) is to enable peripheral devices to cut

out the “middle man” role of the CPU in data transfer. It allows peripheral devices to

transfer data directly from and to memory without the intervention of the CPU. Having

peripheral devices access memory directly would allow the CPU to do other work,

which would lead to improved performance, especially in the cases of large transfers.

The DMA controller is a piece of hardware that controls one or more peripheral

devices. It allows devices to transfer data to or from the system’s memory without

the help of the processor. In a typical DMA transfer, some event notifies the DMA

controller that data needs to be transferred to or from memory. Both the DMA and

CPU use memory bus and only one or the other can use the memory at the same

time. The DMA controller then sends a request to the CPU asking its permission

to use the bus. The CPU returns an acknowledgment to the DMA controller granting

it bus access. The DMA can now take control of the bus to independently conduct

memory transfer. When the transfer is complete the DMA relinquishes its control of

the bus to the CPU. Processors that support DMA provide one or more input signals

that the bus requester can assert to gain control of the bus and one or more output

signals that the CPU asserts to indicate it has relinquished the bus. Figure 8.10

shows how the DMA controller shares the CPU’s memory bus.

mywbut.com

14

Direct memory access controllers require initialization by the CPU. Typical setup

parameters include the address of the source area, the address of the destination area,

the length of the block, and whether the DMA controller should generate a processor

interrupt once the block transfer is complete. A DMA controller has an address reg-

ister, a word count register, and a control register. The address register contains an

address that specifies the memory location of the data to be transferred. It is typically

possible to have the DMA controller automatically increment the address register

after each word transfer, so that the next transfer will be from the next memory

location. The word count register holds the number of words to be transferred.

The word count is decremented by one after each word transfer. The control register

specifies the transfer mode.

Direct memory access data transfer can be performed in burst mode or single-

cycle mode. In burst mode, the DMA controller keeps control of the bus until all

the data has been transferred to (from) memory from (to) the peripheral device.

This mode of transfer is needed for fast devices where data transfer cannot be

stopped until the entire transfer is done. In single-cycle mode (cycle stealing), the

DMA controller relinquishes the bus after each transfer of one data word. This mini-

mizes the amount of time that the DMA controller keeps the CPU from controlling

the bus, but it requires that the bus request/acknowledge sequence be performed for

every single transfer. This overhead can result in a degradation of the performance.

The single-cycle mode is preferred if the system cannot tolerate more than a few

cycles of added interrupt latency or if the peripheral devices can buffer very large

amounts of data, causing the DMA controller to tie up the bus for an excessive

amount of time.

The following steps summarize the DMA operations:

1. DMA controller initiates data transfer.

2. Data is moved (increasing the address in memory, and reducing the count of

words to be moved).

CPU

Memory

DMA
Controller

Device

DMA Acknowledgement

DMA Request

Control Signals

Data Bus

Address Bus

Figure 8.10 DMA controller shares the CPU’s memory bus

mywbut.com

15

3. When word count reaches zero, the DMA informs the CPU of the termination

by means of an interrupt.

4. The CPU regains access to the memory bus.

A DMA controller may have multiple channels. Each channel has associated with it

an address register and a count register. To initiate a data transfer the device driver

sets up the DMA channel’s address and count registers together with the direction of

the data transfer, read or write. While the transfer is taking place, the CPU is free to

do other things. When the transfer is complete, the CPU is interrupted.

Direct memory access channels cannot be shared between device drivers. A

device driver must be able to determine which DMA channel to use. Some devices

have a fixed DMA channel, while others are more flexible, where the device driver

can simply pick a free DMA channel to use.

Linux tracks the usage of the DMA channels using a vector of dma chan data

structures (one per DMA channel). The dma chan data structure contains just two

fields, a pointer to a string describing the owner of the DMA channel and a flag indi-

cating if the DMA channel is allocated or not.

8.5. BUSES

A bus in computer terminology represents a physical connection used to carry a

signal from one point to another. The signal carried by a bus may represent address,

data, control signal, or power. Typically, a bus consists of a number of connections

running together. Each connection is called a bus line. A bus line is normally ident-

ified by a number. Related groups of bus lines are usually identified by a name. For

example, the group of bus lines 1 to 16 in a given computer system may be used to

carry the address of memory locations, and therefore are identified as address lines.

Depending on the signal carried, there exist at least four types of buses: address,

data, control, and power buses. Data buses carry data, control buses carry control

signals, and power buses carry the power-supply/ground voltage. The size

(number of lines) of the address, data, and control bus varies from one system to

another. Consider, for example, the bus connecting a CPU and memory in a given

system, called the CPU bus. The size of the memory in that system is 512M-

word and each word is 32 bits. In such system, the size of the address bus should

be log2(512�220) 29 lines, the size of the data bus should be 32 lines, and at

least one control line (�RR=W) should exist in that system.

In addition to carrying control signals, a control bus can carry timing signals.

These are signals used to determine the exact timing for data transfer to and from

a bus; that is, they determine when a given computer system component, such as

the processor, memory, or I/O devices, can place data on the bus and when they

can receive data from the bus. A bus can be synchronous if data transfer over the

bus is controlled by a bus clock. The clock acts as the timing reference for all bus

signals. A bus is asynchronous if data transfer over the bus is based on the avail-

ability of the data and not on a clock signal. Data is transferred over an asynchronous

mywbut.com

16

bus using a technique called handshaking. The operations of synchronous and asyn-

chronous buses are explained below.

To understand the difference between synchronous and asynchronous, let us con-

sider the case when a master such as a CPU or DMA is the source of data to be trans-

ferred to a slave such as an I/O device. The following is a sequence of events

involving the master and slave:

1. Master: send request to use the bus

2. Master: request is granted and bus is allocated to master

3. Master: place address/data on bus

4. Slave: slave is selected

5. Master: signal data transfer

6. Slave: take data

7. Master: free the bus

8.5.1. Synchronous Buses

In synchronous buses, the steps of data transfer take place at fixed clock cycles.

Everything is synchronized to bus clock and clock signals are made available to

both master and slave. The bus clock is a square wave signal. A cycle starts at

one rising edge of the clock and ends at the next rising edge, which is the beginning

of the next cycle. A transfer may take multiple bus cycles depending on the speed

parameters of the bus and the two ends of the transfer.

One scenario would be that on the first clock cycle, the master puts an address on

the address bus, puts data on the data bus, and asserts the appropriate control lines.

Slave recognizes its address on the address bus on the first cycle and reads the new

value from the bus in the second cycle.

Synchronous buses are simple and easily implemented. However, when connect-

ing devices with varying speeds to a synchronous bus, the slowest device will deter-

mine the speed of the bus. Also, the synchronous bus length could be limited to

avoid clock-skewing problems.

8.5.2. Asynchronous Buses

There are no fixed clock cycles in asynchronous buses. Handshaking is used instead.

Figure 8.11 shows the handshaking protocol. The master asserts the data-ready line

1

2

3

4

1

2

3

4

Data-ready

Data-accept

Data Data DataData-Bus

Figure 8.11 Asynchronous bus timing using handshaking protocol

mywbut.com

17

(point 1 in the figure) until it sees a data-accept signal. When the slave sees a data-

ready signal, it will assert the data-accept line (point 2 in the figure). The rising of the

data-accept line will trigger the falling of the data-ready line and the removal of data

from the bus. The falling of the data-ready line (point 3 in the figure) will trigger the

falling of the data-accept line (point 4 in the figure). This handshaking, which is

called fully interlocked, is repeated until the data is completely transferred. Asyn-

chronous bus is appropriate for different speed devices.

8.5.3. Bus Arbitration

Bus arbitration is needed to resolve conflicts when two or more devices want to

become the bus master at the same time. In short, arbitration is the process of select-

ing the next bus master from among multiple candidates. Conflicts can be resolved

based on fairness or priority in a centralized or distributed mechanisms.

Centralized Arbitration In centralized arbitration schemes, a single arbiter is

used to select the next master. A simple form of centralized arbitration uses a bus

request line, a bus grant line, and a bus busy line. Each of these lines is shared by

potential masters, which are daisy-chained in a cascade. Figure 8.12 shows this

simple centralized arbitration scheme.

In the figure, each of the potential masters can submit a bus request at any time.

A fixed priority is set among the masters from left to right. When a bus request is

received at the central bus arbiter, it issues a bus grant by asserting the bus grant

line. When the potential master that is closest to the arbiter (potential master 1) sees

the bus grant signal, it checks to see if it had made a bus request. If yes, it takes over

the bus and stops propagation of the bus grant signal any further. If it has not made a

request, it will simple turn the bus grant signal to the next master to the right (potential

master 2), and so on. When the transaction is complete, the busy line is deasserted.

Instead of using shared request and grant lines, multiple bus request and bus grant

lines can be used. In one scheme, each master will have its own independent request

and grant line as shown in Figure 8.13. The central arbiter can employ any priority-

based or fairness-based tiebreaker. Another scheme allows the masters to have mul-

tiple priority levels. For each priority level, there is a bus request and a bus grant

line. Within each priority level, daisy chain is used. In this scheme, each device is

attached to the daisy chain of one priority level. If the arbiter receives multiple

Central
Bus

Arbiter

Potential
Master 1

Potential
Master 2

Potential
Master n

Bus Busy

Bus Request

Bus Grant

Figure 8.12 Centralized arbiter in a daisy chain scheme

mywbut.com

18

bus requests from different levels, it grants the bus to the level with the highest

priority. Daisy chaining is used among the devices of that level. Figure 8.14

shows an example of four devices included in two priority levels. Potential

master 1 and potential master 3 are daisy-chained in level 1 and potential master

2 and potential master 4 are daisy-chained in level 2.

Decentralized Arbitration In decentralized arbitration schemes, priority-based

arbitration is usually used in a distributed fashion. Each potential master has a

unique arbitration number, which is used in resolving conflicts when multiple

requests are submitted. For example, a conflict can always be resolved in favor of

the device with the highest arbitration number. The question now is how to deter-

mine which device has the highest arbitration number? One method is that a request-

ing device would make its unique arbitration number available to all other devices.

Each device compares that number with its own arbitration number. The device with

the smaller number is always dismissed. Eventually, the requester with the highest

arbitration number will survive and be granted bus access.

Req-1

Grant-1
Req-2

Grant-2 Req-n Grant-n

Central
Bus

Arbiter

Potential
Master 1

Potential
Master 2

Potential
Master n

Bus Busy

Figure 8.13 Centralized arbiter with independent request and grant lines

Central
Bus

Arbiter

Request level 1

Bus Busy

Request level 2

Grant level 1

Grant level 2

Potential
Master 1

Potential
Master 2

Potential
Master 3

Potential
Master 4

Figure 8.14 Centralized arbiter with two priority levels (four devices)

mywbut.com

19

8.6. INPUT–OUTPUT INTERFACES

An interface is a data path between two separate devices in a computer system. Inter-

face to buses can be classified based on the number of bits that are transmitted at a

given time to serial versus parallel ports. In a serial port, only 1 bit of data is trans-

ferred at a time. Mice and modems are usually connected to serial ports. A parallel

port allows more than 1 bit of data to be processed at once. Printers are the most

common peripheral devices connected to parallel ports. Table 8.4 shows a summary

of the variety of buses and interfaces used in personal computers.

TABLE 8.4 Descriptions of Buses and Interfaces Used in Personal Computers

Bus/Interface Description

PS/2 A type of port (or interface) that can be used to connect mice and

keyboards to the computer. The PS/2 port is sometimes called the

mouse port.

Industry standard

architecture (ISA)

ISA was originally an 8 bit bus and later expanded to a 16 bit bus in

1984. In 1993, Intel and Microsoft introduced a plug and play

ISA bus that allowed the computer to automatically detect and set

up computer ISA peripherals such as a modem or sound card.

Extended industry

standard

architecture

(EISA)

EISA is an enhanced form of ISA, which allows for 32 bit data

transfers, while maintaining support for 8 and 16 bit expansion

boards. However, its bus speed, like ISA, is only 8 MHz. EISA is

not widely used, due to its high cost and complicated nature.

Micro channel

architecture

(MCA)

MCA was introduced by IBM in 1987. It offered several additional

features over the ISA such as a 32 bit bus, automatically

configured cards and bus mastering for greater efficiency. It is

slightly superior to EISA, but not many expansion boards were

ever made to fit MCA specifications.

VESA (Video

electronics

standards

association) local

bus (VLB)

The VESA, a nonprofit organization founded by NEC, released the

VLB in 1992. It is a 32 bit bus that had direct access to the system

memory at the speed of the processor, commonly the 486 CPU

(33/40 MHz). VLB 2.0 was later released in 1994 and had a

64 bit bus and a bus speed of 50 MHz.

Peripheral

component

interconnect (PCI)

PCI was introduced by Intel in 1992, revised in 1993 to version 2.0,

and later revised in 1995 to PCI 2.1. It is a 32 bit bus that is also

available as a 64 bit bus today. Many modern expansion boards

are connected to PCI slots.

Advanced graphic

port (AGP)

AGPwas introduced by Intel in 1997. AGP is a 32 bit bus designed for

the high demands of 3D graphics. AGP has a direct line to memory,

which allows 3D elements to be stored in the system memory

instead of the video memory. AGP is geared towards data intensive

graphics cards, such as 3D accelerators; its design allows for data

throughput at rates of 266 MB/s.

(continued)

mywbut.com

20

TABLE 8.4 Continued

Bus/Interface Description

Universal serial bus

(USB)

USB is an external bus developed by Intel, Compaq, DEC, IBM,

Microsoft, NEC and Northern Telcom. It was released in 1996 with

the Intel 430HX Triton II Mother Board. USB has the capability of

transferring 12 Mbps, supporting up to 127 devices. Many devices

can be connected to USB ports, which support plug and play.

FireWire (IEEE

1394)

FireWire is a type of external bus, which supports very fast transfer

rates: 400 Mbps. Because of this, FireWire is suitable for

connecting video devices, such as VCRs, to the computer.

Small computer

system interface

(SCSI)

SCSI is a type of parallel interface that is commonly used for mass

storage devices. SCSI can transfer data at rates of 4 MB/s; in
addition, there are several varieties of SCSI that support higher

speeds: Fast SCSI (10 MB/s), Ultra SCSI and Fast Wide SCSI

(20 MB/s), as well as Ultra Wide SCSI (40 MB/s).

Integrated drive

electronics (IDE)

IDE is a commonly used interface for hard disk drives and

CD ROM drives. It is less expensive than SCSI, but offers

slightly less in terms of performance.

Enhanced integrated

drive electronics

(EIDE)

EIDE is an improved version of IDE, which offers better

performance than standard SCSI. It offers transfer rates between

4 and 16.6 MB/s.

PCI X PCI X is a high performance bus that is designed to meet the

increased I/O demands of technologies such as Fibre Channel,

Gigabit Ethernet, and Ultra3 SCSI.

Communication and

network riser

(CNR)

CNR was introduced by Intel in 2000. It is a specification that

supports audio, modem USB and local area networking interfaces

of core logic chipsets.

mywbut.com

21

