Chapter 1

Introduction

Programming languages are notations for describing computations to people
and to machines. The world as we know it depends on programming languages,
because all the software running on all the computers was written in some
programming language. But, before a program can be run, it first must be
translated into a form in which it can be executed by a computer.

The software systems that do this translation are called compilers.

This book is about how to design and implement compilers. We shall dis-
cover that a few basic ideas can be used to construct translators for a wide
variety of languages and machines. Besides compilers, the principles and tech-
niques for compiler design are applicable to so many other domains that they
are likely to be reused many times in the career of a computer scientist. The
study of compiler writing touches upon programming languages, machine ar-
chitecture, language theory, algorithms, and software engineering.

In this preliminary chapter, we introduce the different forms of language
translators, give a high level overview of the structure of a typical compiler,
and discuss the trends in programming languages and machine architecture
that are shaping compilers. We include some observations on the relationship
between compiler design and computer-science theory and an outline of the
applications of compiler technology that go beyond compilation. We end with
a brief outline of key programming-language concepts that will be needed for
our study of compilers.

1.1 Language Processors

Simply stated, a compiler is a program that can read a program in one lan-
guage — the source language — and translate it into an equivalent program in
another language — the target language; see Fig. 1.1. An important role of the

compiler is to report any errors in the source program that it detects during
the translation process.

2 CHAPTER 1. INTRODUCTION

source program

'

Compiler

+

target program

Figure 1.1: A compiler

If the target program is an executable machine-language program, it can
then be called by the user to process inputs and produce outputs; see Fig. 1.2.

input — Target Program = output

Figure 1.2: Running the target program

An interpreter is another common kind of language processor. Instead of
producing a target program as a translation, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by
the user, as shown in Fig. 1.3.

source program -
Interpreter —» output

input —»

Figure 1.3: An interpreter

The machine-language target program produced by a compiler is usually
much faster than an interpreter at mapping inputs to outputs . An interpreter,
however, can usually give better error diagnostics than a compiler, because it
executes the source program statement by statement.

Example 1.1: Java language processors combine compilation and interpreta-
tion, as shown in Fig. 1.4. A Java source program may first be compiled into
an intermediate form called bytecodes. The bytecodes are then interpreted by a
virtual machine. A benefit of this arrangement is that bytecodes compiled on
one machine can be interpreted on another machine, perhaps across a network.

In order to achieve faster processing of inputs to outputs, some Java compil-
ers, called just-in-time compilers, translate the bytecodes into machine language
immediately before they run the intermediate program to process the input. O

1.1. LANGUAGE PROCESSORS 3

source programl

Translator

f

intermediate program — Virtual
Machine

= output
input —m

Figure 1.4: A hybrid compiler

In addition to a compiler, several other programs may be required to create
an executable target program, as shown in Fig. 1.5. A source program may be
divided into modules stored in separate files. The task of collecting the source
program is sometimes entrusted to a separate program, called a preprocessor.
The preprocessor may also expand shorthands, called macros, into source lan-
guage statements.

The modified source program is then fed to a compiler. The compiler may
produce an assembly-language program as its output, because assembly lan-
guage is easier to produce as output and is easier to debug. The assembly
language is then processed by a program called an assembler that produces
relocatable machine code as its output.

Large programs are often compiled in pieces, so the relocatable machine
code may have to be linked together with other relocatable object files and
library files into the code that actually runs on the machine. The linker resolves
external memory addresses, where the code in one file may refer to a location
in another file. The loader then puts together all of the executable object files
into memory for execution.

1.1.1 Exercises for Section 1.1

Exercise 1.1.1: What is the difference between a compiler and an interpreter?

Exercise 1.1.2: What are the advantages of (a) a compiler over an interpreter
(b) an interpreter over a compiler?

Exercise 1.1.3: What advantages are there to a language-processing system in
which the compiler produces assembly language rather than machine language?

Exercise 1.1.4: A compiler that translates a high-level language into another
high-level language is called a source-to-source translator. What advantages are
there to using C as a target language for a compiler?

Exercise 1.1.5: Describe some of the tasks that an assembler needs to per-
form.

4 CHAPTER 1. INTRODUCTION

source program

Preprocessor J

modified source program

Compiler

v

target assembly program

Assembler

relocatable machine code

¥

Linker/Loader =

library files
relocatable object files

target machine code

Figure 1.5: A language-processing system

1.2 The Structure of a Compiler

Up to this point we have treated a compiler as a single box that maps a source
program into a semantically equivalent target program. If we open up this box
a little, we see that there are two parts to this mapping: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces and
imposes a grammatical structure on them. It then uses this structure to cre-
ate an intermediate representation of the source program. If the analysis part
detects that the source program is either syntactically ill formed or semanti-
cally unsound, then it must provide informative messages, so the user can take
corrective action. The analysis part also collects information about the source
program and stores it in a data structure called a symbol table, which is passed
along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired target program from the interme-
diate representation and the information in the symbol table. The analysis part
is often called the front end of the compiler; the synthesis part is the back end.

If we examine the compilation process in more detail, we see that it operates
as a sequence of phases, each of which transforms one representation of the
source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,
and the intermediate representations between the grouped phases need not be
constructed explicitly. The symbol table, which stores information about the

1.2. THE STRUCTURE OF A COMPILER 5

character stream

1

Lexical Analyzer

T
token stream

Syntax Analyzer

I
syntax tree

Semantic Analyzer J

I
syntax tree

Symbol Table Etermediate Code Generator

I .
intermediate representation

|

Machine-Independent]
Code Optimizer

i
intermediate representation

Code Generator

——
target-machine code

Machine-Dependent
Code Optimizer

T
target-machine code

Figure 1.6: Phases of a compiler

entire source program, is used by all phases of the compiler.

Some compilers have a machine-independent optimization phase between
the front end and the back end. The purpose of this optimization phase is to
perform transformations on the intermediate representation, so that the back
end can produce a better target program than it would have otherwise pro-
duced from an unoptimized intermediate representation. Since optimization is

optional, one or the other of the two optimization phases shown in Fig. 1.6 may
be missing.

1.2.1 Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. The lex-
ical analyzer reads the stream of characters making up the source program

6 CHAPTER 1. INTRODUCTION

and groups the characters into meaningful sequences called lexzemes. For each
lexeme, the lexical analyzer produces as output a token of the form

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis. In the token, the
first component token-name is an abstract symbol that is used during syntax
analysis, and the second component atéribute-value points to an entry in the
symbol table for this token. Information from the symbol-table entry is needed
for semantic analysis and code generation.

For example, suppose a source program contains the assignment statement

position = initial + rate * 60 (1.1)

The characters in this assignment could be grouped into the following lexemes
and mapped into the following tokens passed on to the syntax analyzer:

1. position is alexeme that would be mapped into a token (id, 1), where id
is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for position. The symbol-table entry for an identifier holds
information about the identifier, such as its name and type.

2. The assignment symbol = is a lexeme that is mapped into the token (=).
Since this token needs no attribute-value, we have omitted the second
component. We could have used any abstract symbol such as assign for
the token-name, but for notational convenience we have chosen to use the
lexeme itself as the name of the abstract symbol.

3. initial is a lexeme that is mapped into the token (id, 2), where 2 points
to the symbol-table entry for initial.

4. +is a lexeme that is mapped into the token (+).

5. rate is a lexeme that is mapped into the token (id, 3), where 3 points to
the symbol-table entry for rate.

6. * is a lexeme that is mapped into the token (x).
7. 60 is a lexeme that is mapped into the token (60).!

Blanks separating the lexemes would be discarded by the lexical analyzer.
Figure 1.7 shows the representation of the assignment statement (1.1) after

lexical analysis as the sequence of tokens
(id, 1) (=) (id,2) (+) (id, 3} () (60) (1.2)

In this representation, the token names =, +, and * are abstract symbols for
the assignment, addition, and multiplication operators, respectively.

1Technically speaking, for the lexeme 60 we should make up a token like (number, 4},
where 4 points to the symbol table for the internal representation of integer 60 but we _shall
defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques

for building lexical analyzers.

1.2. THE STRUCTURE OF A COMPILER

position = initial + rate * 60

{

Lexical Analyzer ‘

(id, 1) (=) (id,2) (+) (id, 3) (*) (60)

‘ Syntax Analyzer ‘

Gd,1y” >+
. . . \
1 | position| --- (id, 2) x
2 | initial | --- (id, 3) 60
3 | rate e ¥
Semantic Analyzer
. /: ~—
SYMBOL TABLE (id, 1) ot
(id, 2) *
(id, 3 inttofloat
|
60

' Intermediate Code Generator

t1 = inttofloat (60)
t2 = id3 * t1
t3 = id2 + t2
idl = t3
\

Code Optimizer

t1 = id3 * 60.0
idl = id2 + t1

{

Code Generator

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF idi, Ri

Figure 1.7: Translation of an assignment statement

8 CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysis

The second phase of the compiler is syntaz analysis or parsing. The parser uses
the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure
of the token stream. A typical representation is a syntaz tree in which cach
interior node represents an operation and the children of the node represent the
arguments of the operation. A syntax tree for the token stream (1.2) is shown
as the output of the syntactic analyzer in Fig. 1.7.
This tree shows the order in which the operations in the assignment

position = initial + rate * 60

are to be performed. The tree has an interior node labeled x with (id, 3) as
its left child and the integer 60 as its right child. The node (id, 3) represents
the identifier rate. The node labeled * makes it explicit that we must first
multiply the value of rate by 60. The node labeled + indicates that we must
add the result of this multiplication to the value of initial. The root of the
tree, labeled =, indicates that we must store the result of this addition into the
location for the identifier position. This ordering of operations is consistent
with the usual conventions of arithmetic which tell us that multiplication has
higher precedence than addition, and hence that the multiplication is to be
performed before the addition.

The subsequent phases of the compiler use the grammatical structure to help
analyze the source program and generate the target program. In Chapter 4
we shall use context-free grammars to specify the grammatical structure of
programming languages and discuss algorithms for constructing efficient syntax
analyzers automatically from certain classes of grammars. In Chapters 2 and 5
we shall see that syntax-directed definitions can help specify the translation of
programming language constructs.

1.2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol
table to check the source program for semantic consistency with the language
definition. It also gathers type information and saves it in either the syntax tree
or the symbol table, for subsequent use during intermediate-code generation.

An important part of semantic analysis is type checking, where the compiler
checks that each operator has matching operands. For example, many program-
ming language definitions require an array index to be an integer; the compiler
must report an error if a floating-point number is used to index an array.

The language specification may permit some type conversions called coer-
cions. For example, a binary arithmetic operator may be applied to either a
pair of integers or to a pair of floating-point numbers. If the operator is applied
to a floating-point number and an integer, the compiler may convert or coerce
the integer into a floating-point number.

1.2. THE STRUCTURE OF A COMPILER 9

Such a coercion appears in Fig. 1.7. Suppose that position, initial, and
rate have been declared to be floating-point numbers, and that the lexeme 60
by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7
discovers that the operator * is applied to a floating-point number rate and
an integer 60. In this case, the integer may be converted into a floating-point
number. In Fig. 1.7, notice that the output of the semantic analyzer has an
extra node for the operator inttofloat, which explicitly converts its integer
argument into a floating-point number. Type checking and semantic analysis
are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program into target code, a compiler may
construct one or more intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate representation; they are
commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compil-
ers generate an explicit low-level or machine-like intermediate representation,
which we can think of as a program for an abstract machine. This intermedi-
ate representation should have two important properties: it should be easy to
produce and it should be easy to translate into the target machine.

In Chapter 6, we consider an intermediate form called three-address code,
which consists of a sequence of assembly-like instructions with three operands
per instruction. Each operand can act like a register. The output of the inter-
mediate code generator in Fig. 1.7 consists of the three-address code sequence

t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2 (1'3)
idl = t3

There are several points worth noting about three-address instructions.
First, each three-address assignment instruction has at most one operator on the
right side. Thus, these instructions fix the order in which operations are to be
done; the multiplication precedes the addition in the source program (1.1). Sec-
ond, the compiler must generate a temporary name to hold the value computed
by a three-address instruction. Third, some “three-address instructions” like
the first and last in the sequence (1.3), above, have fewer than three operands.

In Chapter 6, we cover the principal intermediate representations used in
compilers. Chapters 5 introduces techniques for syntax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code generation

for typical programming language constructs such as expressions, flow-of-control
constructs, and procedure calls.

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means
faster, but other objectives may be desired, such as shorter code, or target code
that consumes less power. For example, a straightforward algorithm generates
the intermediate code (1.3), using an instruction for each operator in the tree
representation that comes from the semantic analyzer.

A simple intermediate code generation algorithm followed by code optimiza-
tion is a reasonable way to generate good target code. The optimizer can deduce
that the conversion of 60 from integer to floating point can be done once and for
all at compile time, so the inttofloat operation can be eliminated by replacing
the integer 60 by the floating-point number 60.0. Moreover, t3 is used only
once to transmit its value to id1 so the optimizer can transform (1.3) into the
shorter sequence

tl = id3 * 60.0

A4
idl = id2 + t1 (1.4)

There is a great variation in the amount of code optimization different com-
pilers perform. In those that do the most, the so-called “optimizing compilers,”
a significant amount of time is spent on this phase. There are simple opti-
mizations that significantly improve the running time of the target program
without slowing down compilation too much. The chapters from 8 on discuss
machine-independent and machine-dependent optimizations in detail.

1.2.6 Code Generation

The code generator takes as input an intermediate representation of the source
program and maps it into the target language. If the target language is machine
code, registers or memory locations are selected for each of the variables used by
the program. Then, the intermediate instructions are translated into sequences
of machine instructions that perform the same task. A crucial aspect of code
generation is the judicious assignment of registers to hold variables.

For example, using registers R1 and R2, the intermediate code in (1.4) might
get translated into the machine code

LDF R2, 1id3
MULF R2, R2, #60.0

LDF R1, id2 (1.5)
ADDF R1, R1, R2
STF idi, R1

The first operand of each instruction specifies a destination. The F in each
instruction tells us that it deals with floating-point numbers. The code in

1.2. THE STRUCTURE OF A COMPILER 11

(1.5) loads the contents of address 1d3 into register R2, then multiplies it with
floating-point constant 60.0. The # signifies that 60.0 is to be treated as an
immediate constant. The third instruction moves 1d2 into register R1 and the
fourth adds to it the value previously computed in register R2. Finally, the value
in register R1 is stored into the address of id1, so the code correctly implements
the assignment statement (1.1). Chapter 8 covers code generation.

This discussion of code generation has ignored the important issue of stor-
age allocation for the identifiers in the source program. As we shall see in
Chapter 7, the organization of storage at run-time depends on the language be-
ing compiled. Storage-allocation decisions are made either during intermediate
code generation or during code generation.

1.2.7 Symbol-Table Management

An essential function of a compiler is to record the variable names used in the
source program and collect information about various attributes of each name.
These attributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the case of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, by value or by
reference), and the type returned.

The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name. The data structure should be
designed to allow the compiler to find the record for each name quickly and to
store or retrieve data from that record quickly. Symbol tables are discussed in
Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of a compiler. In
an implementation, activities from several phases may be grouped together
into a pass that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and
intermediate code generation might be grouped together into one pass. Code
optimization might be an optional pass. Then there could be a back-end pass
consisting of code generation for a particular target machine.

Some compiler collections have been created around carefully designed in-
termediate representations that allow the front end for a particular language to
interface with the back end for a certain target machine. With these collections,
we can produce compilers for different source languages for one target machine
by combining different front ends with the back end for that target machine.
Similarly, we can produce compilers for different target machines, by combining
a front end with back ends for different target machines.

12 CHAPTER 1. INTRODUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any software developer, can profitably use modern
software development environments containing tools such as language editors,
debuggers, version managers, profilers, test harnesses, and so on. In addition
to these general software-development tools, other more specialized tools have
been created to help implement various phases of a compiler.

These tools use specialized languages for specifying and implementing spe-
cific components, and many use quite sophisticated algorithms. The most suc-
cessful tools are those that hide the details of the generation algorithm and
produce components that can be easily integrated into the remainder of the
compiler. Some commonly used compiler-construction tools include

1. Parser generators that automatically produce syntax analyzers from a
grammatical description of a programming language.

2. Scanner generators that produce lexical analyzers from a regular-expres-
sion description of the tokens of a language.

3. Syntaz-directed translation engines that produce collections of routines
for walking a parse tree and generating intermediate code.

4. Code-generator generatorsthat produce a code generator from a collection
of rules for translating each operation of the intermediate language into
the machine language for a target machine.

5. Data-flow analysis engines that facilitate the gathering of information
about how values are transmitted from one part of a program to each
other part. Data-flow analysis is a key part of code optimization.

6. Compiler-construction toolkits that provide an integrated set of routines
for constructing various phases of a compiler.

We shall describe many of these tools throughout this book.

1.3 The Evolution of Programming Languages

The first electronic computers appeared in the 1940’s and were programmed in
machine language by sequences of 0’s and 1’s that explicitly told the computer
what operations to execute and in what order. The operations themselves
were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind
of programming was slow, tedious, and error prone. And once written, the
programs were hard to understand and modify.

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES 13

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of mnemonic assembly languages in the early 1950°s. Initially,
the instructions in an assembly language were just mnemonic representations
of machine instructions. Later, macro instructions were added to assembly
languages so that a programmer could define parameterized shorthands for
frequently used sequences of machine instructions.

A major step towards higher-level languages was made in the latter half of
the 1950’s with the development of Fortran for scientific computation, Cobol
for business data processing, and Lisp for symbolic computation. The philos-
ophy behind these languages was to create higher-level notations with which
programmers could more easily write numerical computations, business appli-
cations, and symbolic programs. These languages were so successful that they
are still in use today.

In the following decades, many more languages were created with innovative
features to help make programming easier, more natural, and more robust.
Later in this chapter, we shall discuss some key features that are common to
many modern programming languages.

Today, there are thousands of programming languages. They can be classi-
fied in a variety of ways. One classification is by generation. First-generation
languages are the machine languages, second-generation the assembly languages,
and third-generation the higher-level languages like Fortran, Cobol, Lisp, C,
C++, C#, and Java. Fourth-generation languages are languages designed
for specific applications like NOMAD for report generation, SQL for database
queries, and Postscript for text formatting. The term fifth-generation language
has been applied to logic- and constraint-based languages like Prolog and OPS5.

Another classification of languages uses the term imperative for languages
in which a program specifies how a computation is to be done and declarative
for languages in which a program specifies what computation is to be done.
Languages such as C, C4-+, C#, and Java are imperative languages. In imper-
ative languages there is a notion of program state and statements that change
the state. Functional languages such as ML and Haskell and constraint logic
languages such as Prolog are often considered to be declarative languages.

The term won Neumann language is applied to programming languages
whose computational model is based on the von Neumann computer archi-
tecture. Many of today’s languages, such as Fortran and C are von Neumann
languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists of a collection of objects
that interact with one another. Simula 67 and Smalltalk are the earliest major
object-oriented languages. Languages such as C++, C#, Java, and Ruby are
more recent object-oriented languages.

Scripting languages are interpreted languages with high-level operators de-
signed for “gluing together” computations. These computations were originally

14 CHAPTER 1. INTRODUCTION

called “scripts.” Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop-
ular examples of scripting languages. Programs written in scripting languages
are often much shorter than equivalent programs written in languages like C.

1.3.2 Impacts on Compilers

Since the design of programming languages and compilers are intimately related,
the advances in programming languages placed new demands on compiler writ-
ers. They had to devise algorithms and representations to translate and support
the new language features. Since the 1940’s, computer architecture has evolved
as well. Not only did the compiler writers have to track new language fea-
tures, they also had to devise translation algorithms that would take maximal
advantage of the new hardware capabilities.

Compilers can help promote the use of high-level languages by minimizing
the execution overhead of the programs written in these languages. Compilers
are also critical in making high-performance computer architectures effective
on users’ applications. In fact, the performance of a computer system is so
dependent on compiler technology that compilers are used as a tool in evaluating
architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.
Moreover, many modern language-processing systems handle several source lan-
guages and target machines within the same framework; that is, they serve as
collections of compilers, possibly consisting of millions of lines of code. Con-
sequently, good software-engineering techniques are essential for creating and
evolving modern language processors.

A compiler must translate correctly the potentially infinite set of programs
that could be written in the source language. The problem of generating the
optimal target code from a source program is undecidable in general; thus,
compiler writers must evaluate tradeoffs about what problems to tackle and
what heuristics to use to approach the problem of generating efficient code.

A study of compilers is also a study of how theory meets practice, as we
shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas
used in compiler design. It is not the intention of this text to teach all the
algorithms and techniques that could be used for building a state-of-the-art
language-processing system. However, readers of this text will acquire the basic
knowledge and understanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3

Exercise 1.3.1: Indicate which of the following terms:

a) imperative b) declarative c¢) von Neumann
d) object-oriented e) functional f) third-generation
g) fourth-generation h) scripting

1.4. THE SCIENCE OF BUILDING A COMPILER 15

apply to which of the following languages:

1) C 2) C++ 3) Cobol 4) Fortran §) Java
6) Lisp 7) ML 8)Perl 9) Python 10) VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-
lems are solved by abstracting the essence of the problem mathematically. These
serve as excellent illustrations of how abstractions can be used to solve prob-
lems: take a problem, formulate a mathematical abstraction that captures the
key characteristics, and solve it using mathematical techniques. The problem
formulation must be grounded in a solid understanding of the characteristics of
computer programs, and the solution must be validated and refined empirically.

A compiler must accept all source programs that conform to the specification
of the language; the set of source programs is infinite and any program can be
very large, consisting of possibly millions of lines of code. Any transformation
performed by the compiler while translating a source program must preserve the
meaning of the program being compiled. Compiler writers thus have influence
over not just the compilers they create, but all the programs that their com-
pilers compile. This leverage makes writing compilers particularly rewarding;
however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly a study of how we design the right mathe-
matical models and choose the right algorithms, while balancing the need for
generality and power against simplicity and efficiency.

Some of most fundamental models are finite-state machines and regular
expressions, which we shall meet in Chapter 3. These models are useful for de-
scribing the lexical units of programs (keywords, identifiers, and such) and for
describing the algorithms used by the compiler to recognize those units. Also
among the most fundamental models are context-free grammars, used to de-
scribe the syntactic structure of programming languages such as the nesting of
parentheses or control constructs. We shall study grammars in Chapter 4. Sim-
ilarly, trees are an important model for representing the structure of programs
and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term “optimization” in compiler design refers to the attempts that a com-
piler makes to produce code that is more efficient, than the obvious code. “Op-
timization” is thus a misnomer, since there is no way that the code produced
by a compiler can be guaranteed to be as fast or faster than any other code
that performs the same task.

16 CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has
become both more important and more complex. It is more complex because
processor architectures have become more complex, yielding more opportunities
to improve the way code executes. It is more important because massively par-
allel computers require substantial optimization, or their performance suffers by
orders of magnitude. With the likely prevalence of multicore machines (com-
puters with chips that have large numbers of processors on them), all compilers
will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if not impossible, to build a robust compiler out of “hacks.”
Thus, an extensive and useful theory has been built up around the problem of
optimizing code. The use of a rigorous mathematical foundation allows us to
show that an optimization is correct and that it produces the desirable effect
for all possible inputs. We shall see, starting in Chapter 9, how models such
as graphs, matrices, and linear programs are necessary if the compiler is to
produce well optimized code.

On the other hand, pure theory alone is insufficient. Like many real-world
problems, there are no perfect answers. In fact, most of the questions that
we ask in compiler optimization are undecidable. One of the most important
skills in compiler design is the ability to formulate the right problem to solve.
We need a good understanding of the behavior of programs to start with and
thorough experimentation and evaluation to validate our intuitions.

Compiler optimizations must meet the following design objectives:

e The optimization must be correct, that is, preserve the meaning of the
compiled program,

e The optimization must improve the performance of many programs,
e The compilation time must be kept reasonable, and
e The engineering effort required must be manageable.

It is impossible to overemphasize the importance of correctness. It is trivial
to write a compiler that generates fast code if the generated code need not
be correct! Optimizing compilers are so difficult to get right that we dare say
that no optimizing compiler is completely error-free! Thus, the most important
objective in writing a compiler is that it is correct.

The second goal is that the compiler must be effective in improving the per-
formance of many input programs. Normally, performance means the speed of
the program execution. Especially in embedded applications, we may also wish
to minimize the size of the generated code. And in the case of mobile devices,
it is also desirable that the code minimizes power consumption. Typically, the
same optimizations that speed up execution time also conserve power. Besides
performance, usability aspects such as error reporting and debugging are also
important.

Third, we need to keep the compilation time short to support a rapid devel-
opment and debugging cycle. This requirement has become easier to meet as

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines get faster. Often, a program is first developed and debugged without
program optimizations. Not only is the compilation time reduced, but more
importantly, unoptimized programs are easier to debug, because the optimiza-
tions introduced by a compiler often obscure the relationship between the source
code and the object code. Turning on optimizations in the compiler sometimes
exposes new problems in the source program; thus testing must again be per-
formed on the optimized code. The need for additional testing sometimes deters
the use of optimizations in applications, especially if their performance is not
critical.

Finally, a compiler is a complex system; we must keep the system sim-
ple to assure that the engineering and maintenance costs of the compiler are
manageable. There is an infinite number of program optimizations that we
could implement, and it takes a nontrivial amount of effort to create a correct
and effective optimization. We must prioritize the optimizations, implementing
only those that lead to the greatest benefits on source programs encountered in
practice.

Thus, in studying compilers, we learn not only how to build a compiler, but
also the general methodology of solving complex and open-ended problems. The
approach used in compiler development involves both theory and experimenta-
tion. We normally start by formulating the problem based on our intuitions on
what the important issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the technol-
ogy learned by studying compilers in school, yet have never, strictly speaking,
written (even part of) a compiler for a major programming language. Compiler
technology has other important uses as well. Additionally, compiler design im-
pacts several other areas of computer science. In this section, we review the
most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming
Languages

A high-level programming language defines a programming abstraction: the
programmer expresses an algorithm using the language, and the compiler must
translate that program to the target language. Generally, higher-level program-
ming languages are easier to program in, but are less efficient, that is, the target
programs run more slowly. Programmers using a low-level language have more
control over a computation and can, in principle, produce more efficient code.
Unfortunately, lower-level programs are harder to write and — worse still —
less portable, more prone to errors, and harder to maintain. Optimizing com-
pilers include techniques to improve the performance of generated code, thus
offsetting the inefficiency introduced by high-level abstractions.

18 CHAPTER 1. INTRODUCTION

Example 1.2: The register keyword in the C programming language is an
early example of the interaction between compiler technology and language evo-
lution. When the C language was created in the mid 1970s, it was considered
necessary to let a programmer control which program variables reside in regis-
ters. This control became unnecessary as effective register-allocation techniques
were developed, and most modern programs no longer use this language feature.
In fact, programs that use the register keyword may lose efficiency, because
programmers often are not the best judge of very low-level matters like register
allocation. The optimal choice of register allocation depends greatly on the
specifics of a machine architecture. Hardwiring low-level resource-management
decisions like register allocation may in fact hurt performance, especially if the
program is run on machines other than the one for which it was written. O

The many shifts in the popular choice of programming languages have been
in the direction of increased levels of abstraction. C was the predominant
systems programming language of the 80’s; many of the new projects started
in the 90’s chose C+4+; Java, introduced in 1995, gained popularity quickly
in the late 90’s. The new programming-language features introduced in each
round spurred new research in compiler optimization. In the following, we give
an overview on the main language features that have stimulated significant
advances in compiler technology.

Practically all common programming languages, including C, Fortran and
Cobol, support user-defined aggregate data types, such as arrays and structures,
and high-level control flow, such as loops and procedure invocations. If we just
take each high-level construct or data-access operation and translate it directly
to machine code, the result would be very inefficient. A body of compiler
optimizations, known as data-flow optimizations, has been developed to analyze
the flow of data through the program and removes redundancies across these
constructs. They are effective in generating code that resembles code written
by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++, C#, and Java. The key
ideas behind object orientation are

1. Data abstraction and

2. Inheritance of properties,

both of which have been found to make programs more modular and easier to
maintain. Object-oriented programs are different from those written in many
other languages, in that they consist of many more, but smaller, procedures
(called methods in object-oriented terms). Thus, compiler optimizations must
be able to perform well across the procedural boundaries of the source program.
Procedure inlining, which is the replacement of a procedure call by the body
of the procedure, is particularly useful here. Optimizations to speed up virtual
method dispatches have also been developed.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 19

Java has many features that make programming easier, many of which have
been introduced previously in other languages. The Java language is type-safe;
that is, an object cannot be used as an object of an unrelated type. All array
accesses are checked to ensure that they lie within the bounds of the array.
Java has no pointers and does not allow pointer arithmetic. It has a built-in
garbage-collection facility that automatically frees the memory of variables that
are no longer in use. While all these features make programming easier, they
incur a run-time overhead. Compiler optimizations have been developed to
reduce the overhead, for example, by eliminating unnecessary range checks and
by allocating objects that are not accessible beyond a procedure on the stack
instead of the heap. Effective algorithms also have been developed to minimize
the overhead of garbage collection.

In addition, Java is designed to support portable and mobile code. Programs
are distributed as Java bytecode, which must either be interpreted or compiled
into native code dynamically, that is, at run time. Dynamic compilation has also
been studied in other contexts, where information is extracted dynamically at
run time and used to produce better-optimized code. In dynamic optimization,
it is important to minimize the compilation time as it is part of the execution
overhead. A common technique used is to only compile and optimize those
parts of the program that will be frequently executed.

1.5.2 Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable
demand for new compiler technology. Almost all high-performance systems
take advantage of the same two basic techniques: parallelism and memory hi-
erarchies. Parallelism can be found at several levels: at the instruction level,
where multiple operations are executed simultaneously and at the processor
level, where different threads of the same application are run on different pro-
cessors. Memory hierarchies are a response to the basic limitation that we can
build very fast storage or very large storage, but not storage that is both fast
and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this
parallelism can be hidden from the programmer. Programs are written as if all
instructions were executed in sequence; the hardware dynamically checks for
dependencies in the sequential instruction stream and issues them in parallel
when possible. In some cases, the machine includes a hardware scheduler that
can change the instruction ordering to increase the parallelism in the program.
Whether the hardware reorders the instructions or not, compilers can rearrange
the instructions to make instruction-level parallelism more effective.
Instruction-level parallelism can also appear explicitly in the instruction set.
VLIW (Very Long Instruction Word) machines have instructions that can issue

20 CHAPTER 1. INTRODUCTION

multiple operations in parallel. The Intel 1A64 is a well-known example of such
an architecture. All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same time.
Compiler techniques have been developed to generate code automatically for
such machines from sequential programs.

Multiprocessors have also become prevalent; even personal computers of-
ten have multiple processors. Programmers can write multithreaded code for
multiprocessors, or parallel code can be automatically generated by a com-
piler from conventional sequential programs. Such a compiler hides from the
programmers the details of finding parallelism in a program, distributing the
computation across the machine, and minimizing synchronization and com-
munication among the processors. Many scientific-computing and engineering
applications are computation-intensive and can benefit greatly from parallel
processing. Parallelization techniques have been developed to translate auto-
matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different speeds
and sizes, with the level closest to the processor being the fastest but small-
est. The average memory-access time of a program is reduced if most of its
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and
the existence of a memory hierarchy improve the potential performance of a
machine, but they must be harnessed effectively by the compiler to deliver real
performance on an application.

Memory hierarchies are found in all machines. A processor usually has
a small number of registers consisting of hundreds of bytes, several levels of
caches containing kilobytes to megabytes, physical memory containing mega-
bytes to gigabytes, and finally secondary storage that contains gigabytes and
beyond. Correspondingly, the speed of accesses between adjacent levels of the
hierarchy can differ by two or three orders of magnitude. The performance of a
system is often limited not by the speed of the processor but by the performance
of the memory subsystem. While compilers traditionally focus on optimizing
the processor execution, more emphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problem in
optimizing a program. Unlike registers that have to be managed explicitly in
software, caches and physical memories are hidden from the instruction set and
are managed by hardware. It has been found that cache-management policies
implemented by hardware are not effective in some cases, especially in scientific
code that has large data structures (arrays, typically). It is possible to improve
the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change
the layout of code to improve the effectiveness of instruction caches.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 21

1.5.3 Design of New Computer Architectures

In the early days of computer architecture design, compilers were developed
after the machines were built. That has changed. Since programming in high-
level languages is the norm, the performance of a computer system is determined
not by its raw speed but also by how well compilers can exploit its features.
Thus, in modern computer architecture development, compilers are developed
in the processor-design stage, and compiled code, running on simulators, is used
to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced Instruction-Set
Computer) architecture. Prior to this invention, the trend was to develop pro-
gressively complex instruction sets intended to make assembly programming
easier; these architectures were known as CISC (Complex Instruction-Set Com-
puter). For example, CISC instruction sets include complex memory-addressing
modes to support data-structure accesses and procedure-invocation instructions
that save registers and pass parameters on the stack.

Compiler optimizations often can reduce these instructions to a small num-
ber of simpler operations by eliminating the redundancies across complex in-
structions. Thus, it is desirable to build simple instruction sets; compilers can
use them effectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the
x86 architecture—the most popular microprocessor—has a CISC instruction
set, many of the ideas developed for RISC machines are used in the imple-
mentation of the processor itself. Moreover, the most effective way to use a
high-performance x86 machine is to use just its simple instructions.

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.
They include data flow machines, vector machines, VLIW (Very Long Instruc-
tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro-
cessors, systolic arrays, multiprocessors with shared memory, and multiproces-
sors with distributed memory. The development of each of these architectural
concepts was accompanied by the research and development of corresponding
compiler technology.

Some of these ideas have made their way into the designs of embedded
machines. Since entire systems can fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achieve better
cost-effectiveness for a particular application. Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures

22 CHAPTER 1. INTRODUCTION

to converge, application-specific processors exhibit a diversity of computer ar-
chitectures. Compiler technology is needed not only to support programming
for these architectures, but also to evaluate proposed architectural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-
guage to the machine level, the same technology can be applied to translate
between different kinds of languages. The following are some of the important
applications of program-translation techniques.

Binary Translation

Compiler technology can be used to translate the binary code for one machine
to that of another, allowing a machine to run programs originally compiled for
another instruction set. Binary translation technology has been used by various
computer companies to increase the availability of software for their machines.
In particular, because of the domination of the x86 personal-computer mar-
ket, most software titles are available as x86 code. Binary translators have
been developed to convert x86 code into both Alpha and Sparc code. Binary
translation was also used by Transmeta Inc. in their implementation of the x86
instruction set. Instead of executing the complex x86 instruction set directly in
hardware, the Transmeta Crusoe processor is a VLIW processor that relies on
binary translation to convert x86 code into native VLIW code.

Binary translation can also be used to provide backward compatibility.
When the processor in the Apple Macintosh was changed from the Motorola MC
68040 to the PowerPC in 1994, binary translation was used to allow PowerPC
processors run legacy MC 68040 code.

Hardware Synthesis

Not only is most software written in high-level languages; even hardware de-
signs are mostly described in high-level hardware description languages like
Verilog and VHDL (Very high-speed integrated circuit Hardware Description
Language). Hardware designs are typically described at the register trans-
fer level (RTL), where variables represent registers and expressions represent
combinational logic. Hardware-synthesis tools translate RTL descriptions auto-
matically into gates, which are then mapped to transistors and eventually to a
physical layout. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit. Techniques to translate designs at higher
levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying software and hardware, languages are useful in many other
applications. For example, query languages, especially SQL (Structured Query

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 23

Language), are used to search databases. Database queries consist of predicates
containing relational and boolean operators. They can be interpreted or com-
piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation is a general technique used in many scientific and engineering disci-
plines to understand a phenomenon or to validate a design. Inputs to a simula-
tor usually include the description of the design and specific input parameters
for that particular simulation run. Simulations can be very expensive. We typi-
cally need to simulate many possible design alternatives on many different input
sets, and each experiment may take days to complete on a high-performance
machine. Instead of writing a simulator that interprets the design, it is faster
to compile the design to produce machine code that simulates that particular
design natively. Compiled simulation can run orders of magnitude faster than
an interpreter-based approach. Compiled simulation is used in many state-of-
the-art tools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-
duced; they consist of many many details, every one of which must be correct
before the program will work completely. As a result, errors are rampant in
programs; errors may crash a system, produce wrong results, render a system
vulnerable to security attacks, or even lead to catastrophic failures in critical
systems. Testing is the primary technique for locating errors in programs.

An interesting and promising complementary approach is to use data-flow
analysis to locate errors statically (that is, before the program is run). Data-
flow analysis can find errors along all the possible execution paths, and not
just those exercised by the input data sets, as in the case of program testing.
Many of the data-flow-analysis techniques, originally developed for compiler
optimizations, can be used to create tools that assist programmers in their
software engineering tasks.

The problem of finding all program errors is undecidable. A data-flow analy-
sis may be designed to warn the programmers of all possible statements violating
a particular category of errors. But if most of these warnings are false alarms,
users will not use the tool. Thus, practical error detectors are often neither
sound nor complete. That is, they may not find all the errors in the program,
and not all errors reported are guaranteed to be real errors. Nonetheless, var-
ious static analyses have been developed and shown to be effective in finding
errors, such as dereferencing null or freed pointers, in real programs. The fact
that error detectors may be unsound makes them significantly different from
compiler optimizations. Optimizers must be conservative and cannot alter the
semantics of the program under any circumstances.

24 CHAPTER 1. INTRODUCTION

In the balance of this section, we shall mention several ways in which pro-
gram analysis, building upon techniques originally developed to optimize code
in compilers, have improved software productivity. Of special importance are
techniques that detect statically when a program might have a security vulner-
ability.

Type Checking

Type checking is an effective and well-established technique to catch inconsis-
tencies in programs. It can be used to catch errors, for example, where an
operation is applied to the wrong type of object, or if parameters passed to a
procedure do not match the signature of the procedure. Program analysis can
go beyond finding type errors by analyzing the flow of data through a program.
For example, if a pointer is assigned null and then immediately dereferenced,
the program is clearly in error.

The same technology can be used to catch a variety of security holes, in
which an attacker supplies a string or other data that is used carelessly by the
program. A user-supplied string can be labeled with a type “dangerous.” If
this string is not checked for proper format, then it remains “dangerous,” and
if a string of this type is ablé to influence the control-flow of the code at some
point in the program, then there is a potential security flaw.

Bounds Checking

It is easier to make mistakes when programming in a lower-level language than
a higher-level one. For example, many security breaches in systems are caused
by buffer overflows in programs written in C. Because C does not have array-
bounds checks, it is up to the user to ensure that the arrays are not accessed
out of bounds. Failing to check that the data supplied by the user can overflow
a buffer, the program may be tricked into storing user data outside of the
buffer. An attacker can manipulate the input data that causes the program to
misbehave and compromise the security of the system. Techniques have been
developed to find buffer overflows in programs, but with limited success.

Had the program been written in a safe language that includes automatic
range checking, this problem would not have occurred. The same data-flow
analysis that is used to eliminate redundant range checks can also be used to
locate buffer overflows. The major difference, however, is that failing to elimi-
nate a range check would only result in a small run-time cost, while failing to
identify a potential buffer overflow may compromise the security of the system.
Thus, while it is adequate to use simple techniques to optimize range checks, so-
phisticated analyses, such as tracking the values of pointers across procedures,
are needed to get high-quality results in error detection tools.

1.6. PROGRAMMING LANGUAGE BASICS 25

Memory-Management Tools

Garbage collection is another excellent example of the tradeoff between effi-
ciency and a combination of ease of programming and software reliability. Au-
tomatic memory management obliterates all memory-management errors (e.g.,
“memory leaks”), which are a major source of problems in C and C4-4 pro-
grams. Various tools have been developed to help programmers find memory
management errors. For example, Purify is a widely used tool that dynamically
catches memory management errors as they occur. Tools that help identify
some of these problems statically have also been developed.

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions
that appear in the study of programming languages. It is not our purpose to
cover all concepts or all the popular programming languages. We assume that
the reader is familiar with at least one of C, C++, C#, or Java, and may have
encountered other languages as well.

1.6.1 The Static/Dynamic Distinction

Among the most important issues that we face when designing a compiler for
a language is what decisions can the compiler make about a program. If a
language uses a policy that allows the compiler to decide an issue, then we say
that the language uses a static policy or that the issue can be decided at compile
time. On the other hand, a policy that only allows a decision to be made when
we execute the program is said to be a dynamic policy or to require a decision
at run time.

One issue on which we shall concentrate is the scope of declarations. The
scope of a declaration of z is the region of the program in which uses of z refer to
this declaration. A language uses static scope or lexical scope if it is possible to
determine the scope of a declaration by looking only at the program. Otherwise,
the language uses dynamic scope. With dynamic scope, as the program runs,
the same use of 2 could refer to any of several different declarations of z.

Most languages, such as C and Java, use static scope. We shall discuss static
scoping in Section 1.6.3.

Example 1.3: As another example of the static/dynamic distinction, consider
the use of the term “static” as it applies to data in a Java class declaration. In
Java, a variable is a name for a location in memory used to hold a data value.
Here, “static” refers not to the scope of the variable, but rather to the ability of

the compiler to determine the location in memory where the declared variable
can be found. A declaration like

public static int x;

26 CHAPTER 1. INTRODUCTION

makes z a class variable and says that there is only one copy of z, no matter how
many objects of this class are created. Moreover, the compiler can determine a
location in memory where this integer z will be held. In contrast, had “static”
been omitted from this declaration, then each object of the class would have its
own location where x would be held, and the compiler could not determine all
these places in advance of running the program. O

1.6.2 Environments and States

Another important distinction we must make when discussing programming
languages is whether changes occurring as the program runs affect the values of
data elements or affect the interpretation of names for that data. For example,
the execution of an assignment such as x=y+1 changes the value denoted by
the name z. More specifically, the assignment changes the value in whatever
location is denoted by z.

It may be less clear that the location denoted by z can change at run time.
For instance, as we discussed in Example 1.3, if = is not a static (or “class”)
variable, then every object of the class has its own location for an instance
of variable z. In that case, the assignment to z can change any of those “in-
stance” variables, depending on the object to which a method containing that
dssignment is applied.

environment state
names locations values
(variables)

Figure 1.8: Two-stage mapping from names to values

The association of names with locations in memory (the store) and then
with values can be described by two mappings that change as the program runs
(see Fig. 1.8):

1. The environment is a mapping from names to locations in the store. Since
variables refer to locations (“l-values” in the terminology of C), we could
alternatively define an environment as a mapping from names to variables.

2. The state is a mapping from locations in store to their values. That is, the
state maps l-values to their corresponding r-values, in the terminology of

C.
Environments change according to the scope rules of a language.

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer ¢ is
declared a global variable, and also declared as a variable local to function f.
When f is executing, the environment adjusts so that name ¢ refers to the

1.6. PROGRAMMING LANGUAGE BASICS 27

1nt i /* global */
.v.o.id £ A

int i; /* local ¢ */

i=3; /* use of local ¢ */
1

x =i+ 1 /* use of global ¢ */

Figure 1.9: Two declarations of the name 1

location reserved for the i that is local to f, and any use of ¢, such as the
assignment i = 3 shown explicitly, refers to that location. Typically, the local
7 is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of ¢ cannot refer to
the 7 that is local to f. Uses of name 4 in g must be within the scope of some
other declaration of . An example is the explicitly shown statement x = i+1,
which is inside some procedure whose definition is not shown. The ¢ in ¢ 41
presumably refers to the global 7. As in most languages, declarations in C must
precede their use, so a function that comes before the global ¢ cannot refer to
it. O

The environment and state mappings in Fig. 1.8 are dynamic, but there are
a few exceptions:

1. Static versus dynamic binding of names to locations. Most binding of
names to locations is dynamic, and we discuss several approaches to this
binding throughout the section. Some declarations, such as the global 7
in Fig. 1.9, can be given a location in the store once and for all, as the
compiler generates object code.?

2. Static versus dynamic binding of locations to values. The binding of lo-
cations to values (the second stage in Fig. 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.
Declared constants are an exception. For instance, the C definition

#define ARRAYSIZE 1000

2Technically, the C compiler will assign a location in virtual memory for the global 7,
leaving it to the loader and the operating system to determine where in the physical memory
of the machine 7 will be located. However, we shall not worry about “relocation” issues such
as these, which have no impact on compiling. Instead, we treat the address space that the
compiler uses for its output code as if it gave physical memory locations.

28 CHAPTER 1. INTRODUCTION

Names, Identifiers, and Variables

Although the terms “name” and “variable,” often refer to the same thing,
we use them carefully to distinguish between compile-time names and the
run-time locations denoted by names.

An identifier is a string of characters, typically letters or digits, that
refers to (identifies) an entity, such as a data object, a procedure, a class,
or a type. All identifiers are names, but not all names are identifiers.
Names can also be expressions. For example, the name z.y might denote
the field y of a structure denoted by z. Here, z and y are identifiers, while
z.y is a name, but not an identifier. Composite names like 2.y are called
qualified names.

A wvariable refers to a particular location of the store. Tt is common for
the same identifier to be declared more than once; each such declaration
introduces a new variable. Even if each identifier is declared just once, an
identifier local to a recursive procedure will refer to different locations of
the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can determine
this binding by looking at the statement, and we know that it is impossible
for this binding to change when the program executes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope rules
for C are based on program structure; the scope of a declaration is determined
implicitly by where the declaration appears in the program. Later languages,
such as C++, Java, and C#, also provide explicit control over scopes through
the use of keywords like public, private, and protected.

In this section we consider static-scope rules for a language with blocks,
where a block is a grouping of declarations and statements. C uses braces { and
} to delimit a block; the alternative use of begin and end for the same purpose
dates back to Algol.

Example 1.5: To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables
and functions.

2. Functions may have variable declarations within them, where variables
include local variables and parameters. The scope of each such declaration
is restricted to the function in which it appears.

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avoid saying “procedures, functions, or methods,” each time we want
to talk about a subprogram that may be called, we shall usually refer to
all of them as “procedures.” The exception is that when talking explicitly
of programs in languages like C that have only functions, we shall refer
to them as “functions.” Or, if we are discussing a language like Java that
has only methods, we shall use that term instead.

A function generally returns a value of some type (the “return type”),
while a procedure does not return any value. C and similar languages,
which have only functions, treat procedures as functions that have a special
return type “void,” to signify no return value. Object-oriented languages
like Java and C4-4- use the term “methods.” These can behave like either
functions or procedures, but are associated with a particular class.

3. The scope of a top-level declaration of a name z consists of the entire
program that follows, with the exception of those statements that lie
within a function that also has a declaration of z.

The additional detail regarding the C static-scope policy deals with variable
declarations within statements. We examine such declarations next and in
Example 1.6. O

In C, the syntax of blocks is given by

1. One type of statement is a block. Blocks can appear anywhere that other
types of statements, such as assignment statements, can appear.

2. A block is a sequence of declarations followed by a sequence of statements,
all surrounded by braces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block structure. The C family of languages
has block structure, except that a function may not, be defined inside another
function.

We say that a declaration D “belongs” to a block B if B is the most closely
nested block containing D; that is, D is located within B, but not within any
block that is nested within B.

The static-scope rule for variable declarations in a block-structured lan-
guages is as follows. If declaration D of name z belongs to block B, then the
scope of D is all of B, except for any blocks B’ nested to any depth within B :
in which z is redeclared. Here, z is redeclared in B’ if some other declaration
D' of the same name x belongs to B'.

30 CHAPTER 1. INTRODUCTION

An equivalent way to express this rule is to focus on a use of a name z.
Let By, By,..., By be all the blocks that surround this use of z, with By, the
smallest, nested within Bj_1, which is nested within Bj_», and so on. Search
for the largest ¢ such that there is a declaration of z belonging to B;. This use
of z refers to the declaration in B;. Alternatively, this use of # is within the
scope of the declaration in B;.

main() {
(int a = 1; B h
int b = 1; !
{ N
1nt b = 2; B,
[int a= 3; B3J
cout << a << b;
}
{
(int b = 4; B4J
cout << a << b;
}
Lcout << a << b;
}
Lcout << a << b; J

Figure 1.10: Blocks in a C++ program

Example 1.6: The C++ program in Fig. 1.10 has four blocks, with several
definitions of variables @ and b. As a memory aid, each declaration initializes
its variable to the number of the block to which it belongs.

For instance, consider the declaration int a = 1 in block B;. Its scope
is all of By, except for those blocks nested (perhaps deeply) within B; that
have their own declaration of a. Bs, nested immediately within By, does not
have a declaration of a, but B3 does. B4 does not have a declaration of a, so
block Bjs is the only place in the entire program that is outside the scope of the
declaration of the name a that belongs to B;. That is, this scope includes By
and all of By except for the part of By that is within Bs. The scopes of all five
declarations are summarized in Fig. 1.11.

From another point of view, let us consider the output statement in block
B, and bind the variables a and b used there to the proper declarations. The
list of surrounding blocks, in order of increasing size, is By, Ba, B;. Note that
B3 does not surround the point in question. By has a declaration of b, so it
is to this declaration that this use of b refers, and the value of b printed is 4.
However, By does not have a declaration of a, so we next look at B;. That
block does not have a declaration of a either, so we proceed to B;. Fortunately,

1.6. PROGRAMMING LANGUAGE BASICS 31

DECLARATION | SCOPE
int a = 1; B; — B;
int b = 1; B; — B
int b = 2; By — By
int a = 3; B

int b = 4; By

Figure 1.11: Scopes of declarations in Example 1.6

there is a declaration int a = 1 belonging to that block, so the value of a
printed is 1. Had there been no such declaration, the program would have been
erroneous. U

1.6.4 Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an
object of a class with a field (member) z, then the use of in p.x refers to
field z in the class definition. In analogy with block structure, the scope of a
member declaration z in a class C extends to any subclass C’, except if C’ has
a local declaration of the same name z.

Through the use of keywords like public, private, and protected, object-
oriented languages such as C++ or Java provide explicit control over access
to member names in a superclass. These keywords support encapsulation by
restricting access. Thus, private names are purposely given a scope that includes
only the method declarations and definitions associated with that class and any
“friend” classes (the C++ term). Protected names are accessible to subclasses.
Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some
or all of its methods. Therefore, a name z associated with the class C may
have a region of the code that is outside its scope, followed by another region (a
method definition) that is within its scope. In fact, regions inside and outside
the scope may alternate, until all the methods have been defined.

1.6.5 Dynamic Scope

Technically, any scoping policy is dynamic if it is based on factor(s) that can
be known only when the program executes. The term dynamic scope, however,
usually refers to the following policy: a use of a name z refers to the declaration
of z in the most recently called procedure with such a declaration. Dynamic
scoping of this type appears only in special situations. We shall consider two ex-
amples of dynamic policies: macro expansion in the C preprocessor and method
resolution in object-oriented programming.

32 CHAPTER 1. INTRODUCTION

Declarations and Definitions

The apparently similar terms “declaration” and “definition” for program-

. ming-language concepts are actually quite different. Declarations tell us
about the types of things, while definitions tell us about their values. Thus,
int i is a declaration of ¢, while 1 = 1 is a definition of ;.

The difference is more significant when we deal with methods or other
procedures. In C++, a method is declared in a class definition, by giving
the types of the arguments and result of the method (often called the
signature for the method. The method is then defined, i.e., the code for
executing the method is given, in another place. Similarly, it is common
to define a C function in one file and declare it in other files where the
function is used.

Example 1.7: In the C program of Fig. 1.12, identifier a is a macro that
stands for expression (z 4+ 1). But what is 7 We cannot resolve & statically,
that is, in terms of the program text.

#define a (x+1)

int x = 2;

void b() { int x = 1; printf("}d\n", a); }
void c() { printf("%d\n", a); }

void main() { bO; <(); }

Figure 1.12: A macro whose names must be scoped dynamically

In fact, in order to interpret z, we must use the usual dynamic-scope rule.
We examine all the function calls that are currently active, and we take the most
recently called function that has a declaration of z. It is to this declaration that
the use of z refers.

In the example of Fig. 1.12, the function main first calls function b. As b
executes, it prints the value of the macro a. Since (z + 1) must be substituted
for a, we resolve this use of z to the declaration int x=1 in function b. The
reason is that b has a declaration of z, so the (z 4+ 1) in the printf in b refers
to this z. Thus, the value printed is 1.

After b finishes, and c is called, we again need to print the value of macro
a. However, the only z accessible to ¢ is the global z. The printf statement
in ¢ thus refers to this declaration of z, and value 2 is printed. O

Dynamic scope resolution is also essential for polymorphic procedures, those
that have two or more definitions for the same name, depending only on the

1.6. PROGRAMMING LANGUAGE BASICS 33

Analogy Between Static and Dynamic Scoping

While there could be any number of static or dynamic policies for scoping,
there is an interesting relationship between the normal (block-structured)
static scoping rule and the normal dynamic policy. In a sense, the dynamic
rule is to time as the static rule is to space. While the static rule asks us to
find the declaration whose unit (block) most closely surrounds the physical
location of the use, the dynamic rule asks us to find the declaration whose
unit (procedure invocation) most closely surrounds the time of the use.

types of the arguments. In some languages, such as ML (see Section 7.3.3), it
is possible to determine statically types for all uses of names, in which case the
compiler can replace each use of a procedure name p by a reference to the code
for the proper procedure. However, in other languages, such as Java and C++,
there are times when the compiler cannot make that determination.

Example 1.8: A distinguishing feature of object-oriented programming is the
ability of each object to invoke the appropriate method in response to a message.
In other words, the procedure called when z.m() is executed depends on the
class of the object denoted by z at that time. A typical example is as follows:

1. There is a class C' with a method named m().
2. D is a subclass of C, and D has its own method named m().
3. There is a use of m of the form z.m(), where z is an object of class C.

Normally, it is impossible to tell at compile time whether z will be of class
C or of the subclass D. If the method application occurs several times, it is
highly likely that some will be on objects denoted by z that are in class C but
not D, while others will be in class D. It is not until run-time that it can be
decided which definition of m is the right one. Thus, the code generated by the
compiler must determine the class of the object z, and call one or the other
method named m. O

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ
in how these procedures get their arguments. In this section, we shall consider
how the actual parameters (the parameters used in the call of a procedure)
are associated with the formal parameters (those used in the procedure defi-
nition). Which mechanism is used determines how the calling-sequence code
treats parameters. The great majority of languages use either “call-by-value,”
or “call-by-reference,” or both. We shall explain these terms, and another
method known as “call-by-name,” that is primarily of historical interest.

34 CHAPTER 1. INTRODUCTION

Call-by-Value

In call-by-value, the actual parameter is evaluated (if it is an expression) or
copied (if it is a variable). The value is placed in the location belonging to
the corresponding formal parameter of the called procedure. This method is
used in C and Java, and is a common option in C++, as well as in most
other languages. Call-by-value has the effect that all computation involving the
formal parameters done by the called procedure is local to that procedure, and
the actual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that
variable to be changed by the callee. Likewise, array names passed as param-
eters in C, C++, or Java give the called procedure what is in effect a pointer
or reference to the array itself. Thus, if a is the name of an array of the calling
procedure, and it is passed by value to corresponding formal parameter z, then
an assignment such as x[i] = 2 really changes the array element a[2]. The
reason is that, although z gets a copy of the value of a, that value is really a
pointer to the beginning of the area of the store where the array named a is
located.

Similarly, in Java, many variables are really references, or pointers, to the
things they stand for. This observation applies to arrays, strings, and objects
of all classes. Even though Java uses call-by-value exclusively, whenever we
pass the hame of an object to a called procedure, the value received by that
procedure is in effect a pointer to the object. Thus, the called procedure is able
to affect the value of the object itself.

Call-by-Reference

In call-by-reference, the address of the actual parameter is passed to the callee as
the value of the corresponding formal parameter. Uses of the formal parameter
in the code of the callee are implemented by following this pointer to the location
indicated by the caller. Changes to the formal parameter thus appear as changes
to the actual parameter.

If the actual parameter is an expression, however, then the expression is
evaluated before the call, and its value stored in a location of its own. Changes
to the formal parameter change this location, but can have no effect on the
data of the caller.

Call-by-reference is used for “ref” parameters in C++ and is an option in
many other languages. It is almost essential when the formal parameter is a
large object, array, or structure. The reason is that strict call-by-value requires
that the caller copy the entire actual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the
parameter is large. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other objects by copying
only a reference to those objects. The effect is that Java behaves as if it used
call-by-reference for anything other than a basic type such as an integer or real.

1.6. PROGRAMMING LANGUAGE BASICS 35

Call-by-Name

A third mechanism — call-by-name — was used in the early programming
language Algol 60. It requires that the callee execute as if the actual parameter
were substituted literally for the formal parameter in the code of the callee, as
if the formal parameter were a macro standing for the actual parameter (with
renaming of local names in the called procedure, to keep them distinct). When
the actual parameter is an expression rather than a variable, some unintuitive
behaviors occur, which is one reason this mechanism is not favored today.

1.6.7 Aliasing

There is an interesting consequence of call-by-reference parameter passing or
its simulation, as in Java, where references to objects are passed by value. It
is possible that two formal parameters can refer to the same location; such
variables are said to be aliases of one another. As a result, any two variables,
which may appear to take their values from two distinct formal parameters, can
become aliases of each other, as well.

Example 1.9: Suppose a is an array belonging to a procedure p, and p calls
another procedure ¢(z,y) with a call g(a,a). Suppose also that parameters
are passed by value, but that array names are really references to the location
where the array is stored, as in C or similar languages. Now, z and y have
become aliases of each other. The important point is that if within ¢ there is
an assignment x[10] = 2, then the value of y[10] also becomes 2. O

It turns out that understanding aliasing and the mechanisms that create it
is essential if a compiler is to optimize a program. As we shall see starting in
Chapter 9, there are many situations where we can only optimize code if we
can be sure certain variables are not, aliased. For instance, we might determine
that x = 2 is the only place that variable z is ever assigned. If so, then we can
replace a use of z by a use of 2; for example, replace a = x+3 by the simpler
a = 5. But suppose there were another variable y that was aliased to z. Then
an assignment y = 4 might have the unexpected effect of changing z. It might

also mean that replacing a = x+3 by a = 5 was a mistake; the proper value of
a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1: For the block-structured C code of Fig. 1.13(a), indicate the
values assigned to w, z, 9, and z.

Exercise 1.6.2: Repeat Exercise 1.6.1 for the code of Fig. 1.13(b).

Exercise 1.6.3: For the block-structured code of Fig. 1.14, assuming the usual
static scoping of declarations, give the scope for each of the twelve declarations.

36 CHAPTER 1. INTRODUCTION

?nt W, X, ¥, Z; int w, x, y, z;

int 1 = 4; int j = 5; int i = 3; int j = 4;

{ int j = 7; { int i = 5;
i=6; w=1+j;
vo=1+j; }

} x =1+ j;

x =i+ j; { int j = 6;

{ int i = 8; i=17;
y=1+13j; y=1+73;

} }

z =14 j; z=1+7j;

(a) Code for Exercise 1.6.1 (b) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

{ int w, x, y, 2z; /* Block Bl */
{ int x, z; /* Block B2 */
{ int w, x; /* Block B3 *x/ }
}
{ int w, x; /* Block B4 x/
{ int y, z; /* Block B5 %/ }
}

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4: What is printed by the following C code?

#define a (x+1)

int x = 2;

void b() { x = a; printf("%d\n", x); }
void ¢() { int x = 1; printf("%d\n"), a; }
void main() { b(); cO; }

1.7 Summary of Chapter 1

4 Language Processors. An integrated software development environment
includes many different kinds of language processors such as compilers,
interpreters, assemblers, linkers, loaders, debuggers, profilers.

4 Compiler Phases. A compiler operates as a sequence of phases, each of
which transforms the source program from one intermediate representa-

tion to another.

1.7. SUMMARY OF CHAPTER 1 37

¢ Machine and Assembly Languages. Machine languages were the first-
generation programming languages, followed by assembly languages. Pro-
gramming in these languages was time consuming and error prone.

4 Modeling in Compiler Design. Compiler design is one of the places where
theory has had the most impact on practice. Models that have been found
useful include automata, grammars, regular expressions, trees, and many
others.

¢ Code Optimization. Although code cannot truly be “optimized,” the sci-
ence of improving the efficiency of code is both complex and very impor-
tant. It is a major portion of the study of compilation.

¢ Higher-Level Languages. As time goes on, programming languages take
on progressively more of the tasks that formerly were left to the program-
mer, such as memory management, type-consistency checking, or parallel
execution of code.

4 Compilers and Computer Architecture. Compiler technology influences
computer architecture, as well as being influenced by the advances in ar-
chitecture. Many modern innovations in architecture depend on compilers
being able to extract from source programs the opportunities to use the
hardware capabilities effectively.

4 Software Productivity and Software Security. The same technology that
allows compilers to optimize code can be used for a variety of program-
analysis tasks, ranging from detecting common program bugs to discov-
ering that a program is vulnerable to one of the many kinds of intrusions
that “hackers” have discovered.

4 Scope Rules. The scope of a declaration of z is the context in which uses
of x refer to this declaration. A language uses static scope or lexical scope
if it is possible to determine the scope of a declaration by looking only at
the program. Otherwise, the language uses dynamic scope.

4 FEnvironments. The association of names with locations in memory and
then with values can be described in terms of environments, which map
names to locations in store, and states, which map locations to their
values.

4 Block Structure. Languages that allow blocks to be nested are said to
have block structure. A name z in a nested block B is in the scope of a
declaration D of z in an enclosing block if there is no other declaration
of z in an intervening block.

4 Parameter Passing. Parameters are passed from a calling procedure to
the callee either by value or by reference. When large objects are passed
by value, the values passed are really references to the objects themselves,
resulting in an effective call-by-reference.

38 CHAPTER 1. INTRODUCTION

4 Aliasing. When parameters are (effectively) passed by reference, two for-
mal parameters can refer to the same object. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use
by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that
were created by 1982, including C, C++, Pascal, and Smalltalk, see [1].

The GNU Compiler Collection, gcc, is a popular source of open-source
compilers for C, C++, Fortran, Java, and other languages [2]. Phoenix is a
compiler-construction toolkit that provides an integrated framework for build-
ing the program analysis, code generation, and code optimization phases of
compilers discussed in this book [3].

For more information about programming language concepts, we recom-
mend [5,6]. For more on computer architecture and how it impacts compiling,
we suggest [4].

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM
Press, New York, 1996.

2. http://gcc.gnu.org/ .
3. http://research.microsoft.com/phoenix/default.aspx .

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De-
sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran-
cisco, CA, 2004.

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 2006.

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley, 1996.

7. Wexelblat, R. L., History of Programming Languages, Academic Press,
New York, 1981.

