
LANGUAGE PROCESSORS

Introduction to Language processor:

A program that performs task such as translating and interpreting required for processing
a specified programming language. The different types of language processors are

Assemblers- A language translator whose source language is assembly language and the
target language is machine language.

Compiler- A language translator whose source language is a high level language(c, c++,
java etc) and the target language is low level language (machine language or assembly
language)

Detranslator:-converts machine language to assembly level language.

Interpreter: - Interpreter takes one statement of a high level language at a time and
translates it into a machine instruction. Interpreters are easy to write and they do not
require large memory space in the computer. The main disadvantage of interpreter is that
they require more time to execute in the computer.

mywbut.com

 1

Module 2:Compiler

Translator:
A translator is a program that takes as input a program written in one programming
language(source language) and produces as output a program in another language(object
or target language).eg:compiler,assembler.

Compiler:
A compiler is a program that accepts a program written in a high level language and
produces output in low level language.

Programming languages are just notations for describing computations. So, before
execution, they have to be converted to the machine understandable form – the machine
language. This translation is done by the compiler. The translation process should also
report the presence of errors in the source program. This can be diagrammatically
represented as

An interpreter is similar to a compiler, except that it directly executes the program with
the supplied inputs to give the output. Usually, compiler is faster than interpreter, but the
interpreter has better diagnostics, since the execution is step – by – step. Java uses a
hybrid compiler.

The Structure of a Compiler:

A Compiler takes as input a soure program and produces as output an equivalent
sequence of machine instructions. This process is so complex that it is not reasonable,
either from a logical point of view or from an implementation point of view, to consider
the compilation process as occurring in one single step. For this reason, it is customary to
partition the compilation process into a series of sub processes called phases. A phase is a
logically cohesive operation that takes as input one representation of the source program

mywbut.com

 2

and produces as output another representation.

Lexical Analysis
The first phase, called lexical analyzer or scanner, separates characters of the source
language into groups that logically belong together, these groups are called tokens. The
usual tokens are keywords, identifiers, operators, punctuation symbols. The output of the
lexical analyzer is a stream of tokens which is passed to the next phase, the syntax
analyzer or parser. White space and comments are ignored. The scanner produce error
messages. It also stores the information in the symbol table.

mywbut.com

 3

Syntax Analysis
This is also called parsing. The syntax analyzer groups tokens together into syntactic
structures and a parse tree is generated. For example, the three tokens representing A+B
might be grouped into a syntactic structure called an expression. Syntactical errors are
determined with the help of this parse tree.

Intermediate Code Generation

The intermediate code generator uses the structure produced by the syntax analyzer to
create a stream of simple instructions. Examples for intermediate codes are three address
codes, postfix notations etc.The primary difference between intermediate code and
assembly code is that the intermediate code need not specify the registers to be used for
each operation.

Code Optimization

Code optimization is the process of modifying a intermediate code to improve its
efficiency so that the object program runs faster or takes less space.Its output is another
intermediate program.

Code Generation

This phase generates the target code. Allocating memory for each variables, translating
intermediate instruction into machine instruction etc. are functions of this phase.

Table Management

Table management or book keeping keeps track of the names used by the program and
records essential information about each such as its type. The data structure used to
record this information is called a symbol table.

Error handling

The error handler is invoked when an error in the source program is detected. Both the
table management and error handling routines interact with all phases of the compiler.

An example showing the various phases by which an arithmetic expression translated into
a machine code is given below.

S=A+B*C (high level language statement)

mywbut.com

 4

Id1 AssinOp id2 PlusOp id3 MultiplyOp id4 (Token Stream produced by the scanner)

 (Parse Tree produced by the parser)

 (Intermediate code generated by intermediate code generator)

T1=id2+id3
T2=T1*id4
T3=T1+T2
id1=T3

(Optimized code generated by Code Optimizer)
T1=id2+id3
T2=T1*id4
id1=T2

(Target code generated by Code Generator)
LOAD R1, A
ADD R1, B
MUL R1, C
STORE..R1

mywbut.com

 5

Lexical Analysis

The lexical analyzer is the interface between the source program and the compiler. The
lexical analyzer reads the source program one character at a time, carving the source
program into a sequence of atomic units called tokens. Each token represents a sequence
of characters that can be treated as a single logical entity.Identifiers, keywords, constants,
operators and punctuation symbols are typical tokens. The scanner produce error
messages. It also stores the information in the symbol table. The purpose of producing
these tokens is usually to forward them as input to another program, such as a parser. The
block diagram of a lexical analyzer is given below.

For example in FORTRAN statement

 IF (5.EO.MAX) GO TO 100 ---- (1)

We find the following eight tokens: IF; (; .EQ. MAX ;) ; GOTO; 100.

There are two kinds of token:
 1. Specific strings (IF or a semicolon)
 2. Classes of strings (identifiers, constants or labels)
A token consists of two parts, a token type and token value. A token consisting of a
specific string such as a semicolon will be treated as having a type(string) but no value. A
token such as identifier MAX has a type “identifier” and a value consisting of the string
MAX.
The lexical analyzer passes the two components of the token to the parser. The first is a
code for the token type (identifier), and the second is the value, a pointer to the place in
the symbol table reserved for the specific value found.

 When statement (1) is completely processed by the lexical analyzer, the token
stream might look like

 if ([const,341] eq [id,729]) goto [label,554]

The tokens having an associated value are represented by pairs in square brackets. The
second component of the pair can be interpreted as an index into the symbol table where
the information about constants, variables, and labels is kept.

mywbut.com

 6

The relevant entries of the symbol table are suggested in Fig:

Syntax Analysis

Syntax analysis is a process in compilers recognizes the structure of programming
languages. It is also known as parsing. Context-free grammar is usually used for
describing the structure of languages. A parser

• Detects and reports any syntactical errors
• Collect information into symbol table
• Produce a parse tree from which intermediate code can be generated

For example, the expression A / B * C has two possible interpretations:

a) Divide A by B and then multiply by C (as in FORTRAN); or
b) Multiply B by C and then use the result to divide A (as in APL)

Each of these two interpretations can be represented in terms of a parse tree.

mywbut.com

 7

a)

b)

Context-Free Grammar

For the syntactic specification of a programming language we shall use a notation
called context free grammar, which is also called BNF (Backus-Naur Form).
Context-free grammars are powerful enough to describe the syntax of most
programming languages. This notation has a number of significant advantages as a
method of specification for the syntax of a language.

• A grammar gives an efficient, yet easy to understand, syntactic specification

for the programs of a particular programming language.
• An efficient parser can be constructed automatically from a properly designed

grammar.

mywbut.com

 8

• A grammar imparts a structure to a program that is useful for its translation
into object code and for the detection of errors.

For example,

1) If S1 and S2 are statements and E is an expression, then
 “if E then S1 else S2” is a statement

2) If S1, S2……..Sn are statements, then
 “begin S1; S2; ……..Sn; end”

3) If E1 and E2 are expressions, then “E1+E2” is an expression.

If we use the syntactic category “statement” to denote the class of statements
and “expression” to denote the class of expressions, then eg: 1 can be
expressed by the rewriting or production

statement if expression then statement else statement

Similarly eg: 3 can be written as

expression  expression + expression

To express eg: 2 by rewriting rules, we can introduce a new syntactic category
“statement-list” denoting any sequence of statements separated by semicolons.
Then eg: 2 becomes

statement begin statement-list end

In general a grammar involves four quantities:
1) Terminals
2) Non-terminals
3) Start symbol
4) Productions

The basic symbols of which strings in the language are composed is called
terminals. In the above eg: certain keywords such as begin and end are
terminals.
Non-terminals are special symbols that denote set of strings. In the above eg:
the syntactic categories such as statement, expression, and statement-list are
non-terminals.
One non-terminal symbol is selected as a start symbol and it denotes the
language in which we can truly interested.

The production or rewriting rules define the ways in which the syntactic
category may be build up from one another and from the terminals.Each

mywbut.com

 9

production consists of a non-terminal and followed by an arrow followed by a
string of non-terminals and terminals.

Eg: statement begin statement-list end

Parse Tree:

A parse tree is a tree that represents the syntactic structure of a string. If the leaves of the
trees are traversed from left to right. The leaves contain the terminal symbols, and the
internal nodes contain the non-terminal symbols. For example, if AXYZ is a
production, then the parse tree for that derivation will have the subtree

 - (id + id)

mywbut.com

 10

A grammar that produces more than one parse tree for some sentence is said to be
ambiguous. Given below are parse trees for the input “id+id*id”

Basic Parsing Techniques:

The aim of parsing is to determine the validity of a source string. If the string is valid the
parser built a parse tree for that string.

Parsing is of 2 types:

• Top-down
• Bottom-up

Bottom-up parsers build parse tree from the bottom to the root, while top down parsers
start with the root and work down to the leaves. In both cases the input to the parser is
being scanned from left to right, one symbol at a time.

Bottom-up Parsing:

Shift Reduce parser
This uses the bottom up style of parsing. It attempts to construct a parse tree for an input
string beginning at the leaves and working towards the root. It uses a stack to implement
the parser. The stack is empty at the beginning of the parse and will contain the start
symbol at the end of a successful parse.

For example, consider the grammar

 SaAcBe
 AAb\ b
 Bd
And the string abbcde.We want to reduce this string to S.We scan abbcde looking for
substrings that match the right side of the production. The substrings b and d qualify. Let
us choose the leftmost b and replace it by A, the left side of the production Ab.We
obtain the string aAbcde.We now find that Ab, b, and d each match the right side of some
production. We choose to replace the substring Ab by A, the left side of the production
AAb.We now obtain aAcde.Then replacing d by B,the left side of the production
Bd,we obtain aAcBe.We can now replace this entire string by S.

mywbut.com

 11

Stack Implementation of shift Reduce Parsing:

A convenient way to implement a parser is to use a stack and an input buffer. We shall
use the ‘$’ (dollar) to mark the bottom of the stack and the right end of the input.

 Stack Input
 $ w$
The parser operates by shifting zero or more input symbols onto the stack until a handle β
is on top of the stack. The parser then reduces β to the left side of the appropriate
production. The parser repeats this cycle until it has detected an error or until the stack
contains the start symbol and its input is empty.

 Stack Input
 $S $
In this configuration the parser halts and announces successful completion of parsing.

Eg:Let us step through the actions a shift reduce parser might make in parsing the input:
id1+id2*id3 according to the grammar

1) E->E+E
2) E->E*E
3) E->(E)
4) E-> id and using the derivation

E->E + E
 -> E + E * E
 ->E + E * id3
 -> E + id2 * id3
 ->id1 + id2 * id3

 The parsing steps are:

Step Stack Input Action
1 $ id1+id2*id3$ Shift
2 $id1 +id2*id3$ Reduce by E -> id
3 $E +id2*id3$ Shift
4 $E + id2*id3$ Shift
5 $E +id2 *id3$ Reduce by E -> id
6 $E + E *id3$ Shift
7 $E + E * id3$ Shift
8 $E + E * id3 $ Reduce by E ->id
9 $E + E * E $ Reduce by E -> E *E
10 $E + E $ Reduce by E -> E + E
11 $E $ Accept

While the primary operations of the parser are shift and reduce, there are actually four
possible actions a shift reduce parser can make: 1) shift 2) reduce 3) accept 4) error.

mywbut.com

 12

1. In a shift action, the next input symbol is shifted to the top of the stack.
2. In a reduce action, the parser knows the right end of the handle is at the top of the
stack. It must then locate the left end of the handle within the stack and decide with what
nonterminal to replace the handle.
3. In an accept action, the parser announces successful completion of parsing.
4. In an error action, the parser discovers that a syntax error has occurred and calls an
error recovery routine.

Top-down parsing
In top-down parsing, traversal occurs from the top to leaves. Top down parsing can be
viewed as an attempt to find a left most derivation of an input string. This is of 2 forms:

• Backtracking
• Predictive

Backtracking involves reading the input token stream many times. So, this is a time-
consuming method. So, we usually go for predictive ones. A predictive parser is a
recursive descent parser with no backtracking.
For example, consider the grammar

 ScAd
 Aab \ a and the input w=cad.

To construct a parse tree for this sentence top down, we initially create a tree consisting
of a single node labeled S. An input pointer points to c, the first symbol of w.We then use
the first production for S to expand the tree and obtain

The left most leaf, labeled c,matches the first symbol of w,so we now advance the input
pointer to a, the second symbol of w,and consider the next leaf, labeled A.We can then
expand A using the first alternate for A to obtain the tree

mywbut.com

 13

We now have a match for the second input symbol. We now consider d, the third input
symbol, and the next leaf, labeled b.Since b does not match d, we report failure and go
back to A to see whether there is another alternate for A that we have not tried but which
might produce a match.
In going back to A we must reset the input pointer to position 2,the position it had when
we first came to A.We now try second alternate for A to obtain the tree

The leaf a matches the second symbol of w and the leaf d matches the third symbol. Since
we have now produced a parse tree for w, we halt and announce successful completion of
parsing.

 Recursive procedures for top down parsing

procedure S ();
begin
 if input symbol = ‘c’ then
 begin
 ADVANCE ();
 if A () then
 if input symbol =‘d’ then
 begin ADVANCE (); return true end
 end
 return false
 end

(a) procedure S

procedure A ();
begin
isave: =input pointer;
if input symbol = ‘a’ then
 begin
 ADVANCE ();
 if input symbol = ‘b’ then
 begin ADVANCE (); return true end
 end
 input pointer:=isave;

mywbut.com

 14

/*failure to find ab */
if input symbol = ‘a’ then
 begin ADVANCE (); return true end
 else return false
end

(b) Procedure A
Left Recursion

A grammar G is said to be left recursive, if it has a non-terminal A such that there is a
derivation A =>Aα for some α.A left recursive grammar can cause a top down parser to
go into an infinite loop.

Elimination of left recursion

If we have the left recursive pair of productions A Aα / β, where β does not begin with
an A, then we can eliminate the left recursion by replacing this pair of productions with
 A  β A|

 A|  α A| / £

Example: Consider the following grammar

 E E + T | T
 T T * F | F
 F (E) | id
Eliminating the left-recursion, we obtain

 E  TE

|

 E |  + TE | |£
 T  FT |
 T |  * FT | | £
 F (E) | id

Recursive Descent Parsing

A parser that uses a set of recursive procedures to recognize its input with no back
tracking is called a recursive descent parser. It is a commonly used predictive parser.

mywbut.com

 15

Recursive procedures for recursive descent parsing

procedure E ();
begin
 T ();
 EPRIME ();
end;
procedure EPRIME ();
if input symbol = ‘+’ then
 begin
 ADVANCE ();
 T ();
 EPRIME ();
 end;
procedure T ();
begin
 F ();
 TPRIME ();
end;
procedure TPRIME ();
if input symbol = ‘*’ then
 begin
 ADVANCE ();
 F ();
 TPRIME ();
 end;
procedure F ();
if input-symbol = ’id’ then
 ADVANCE ();
else if input-symbol = ‘(’ then
 begin
 ADVANCE ();
 E ();
 if input-symbol = ‘)’ then
 ADVANCE ();
 else ERROR ();
 end
else ERROR ();

mywbut.com

	Lexical Analysis
	An example showing the various phases by which an arithmetic expression translated into a machine code is given below.

