
 1

MODULE 3 – STORAGE ALLOCATION

Storage Allocation

It involves three important tasks.
• Specifies the amount of memory required
• It is a model to implement life time and scope
• Perform memory mapping to access non scalar values

Stack

• Linear Data Structure
• Allocation and deallocation in LIFO order
• One entry accessible at a time, through the top

A stack holding 3 elements are given above. Here the top element is 30 pointed by the
pointer TOS.

Extended Stack
Extended stack differ from a normal stack due to the following reasons.

• Entries are of different size
• Two additional pointers

- Record base pointer (RB), points to first word of last record
- First word in any record is a Reserved Pointer for house keeping

Allocation actions
Push operation
 TOS = TOS + 1
 TOS* = RB
 RB = TOS
 TOS = TOS + n

mywbut.com

 2

Pop operation
 TOS = RB – 1
 RB = RB*

There are two methods of storage allocation, Static Allocation and Dynamic Allocation.

Static Allocation

Allocation performed before execution, during compilation. Usually, the global and static
constants and the garbage collection information are allocated statically.

Dynamic Allocation

Allocation performed during execution. There are two types of dynamic execution.
Automatic Dynamic Allocation and Program controlled Dynamic allocation
Automatic: Memory is allocated to the variables declare in a program unit when the
program unit is entered during execution and deallocated when the program unit is exited.
This uses the stack.
Program controlled: Allocation performed during execution at arbitrary points. This uses
a heap. Usually, the malloc () and new statements are allocated in this way.

Memory allocation in block structured languages

• A block is a program segment that contains data declarations.
• There can be nested blocks.
• Uses dynamic memory allocation.

mywbut.com

 3

Scope Rules

If a variable ‘var’ is created with the name ‘n’ in a block b.

1) ‘var’ can be accessed in any statement situated in block b.
2) ‘var’ can be accessed in any statement situated in a block b| ,which is enclosed in

b, unless b| contains a declaration using the same name.

Consider the sample program given below.

Block Accessible variable
 Local Non-local

A xA, yA, zA ----------

B gB xA , yA , zA

C hC, zC xA , yA , gB

D iD , jD xA , yA , zA

Variable zA is not accessible inside block C since C contains a declaration using the same
name. Thus zA and zC are two distinct variables.

Memory allocation and access
• Automatic memory allocation implemented using extended stack model with variation
• Each record is called an Activation record (AR) and it contains variables for one
activation of block
• During execution Activation Record Base(ARB) points to start of TOS record
• Local variable ‘x’ can be accessed as <ARB> + dx, where dx is the displacement from
starting point to the position where variable x is stored.

mywbut.com

 4

Dynamic pointer
First reserved pointer in activation record is called dynamic pointer. It points to the
activation record of its dynamic parent.

Allocation actions

Push operation
 TOS = TOS + 1
 TOS* = ARB
 ARB = TOS
 TOS = TOS + 1
 TOS* =

TOS = TOS + n

Pop operation
 TOS = ARB – 1
 ARB = ARB*

Static pointer
Second reserved pointer in activation record is called static pointer. It points to the
activation record of its static ancestor. A record can have any level of ancestors.

Array allocation and access
A 1-D array can be allocated as a single sequence of contiguous locations. But for a
2-D array, this is not the case. Array elements can be arranged either in row major
form or in column major form. Given below is the case were elements are arranged in
column major form. Consider a 2 dimensional array with m rows and n columns.
Address of the element a[s1,s2] can be written as
Ad.a[s1,s2] = Ad.a[0,0] + { (s2-0) * m + (s1-0) } * k, where k is the amount of memory
for storing a word.

If the lower limit and upper limit are li and ui then we can rewrite the above formula
as
Ad.a[s1,s2] = Ad.a[l1, l2] + { (s2- l2) * (u1–l1+1) + (s1- l1) } * k

If rangei represents the range of ith subscript, we have
range1 = u1–l1+1, range2 = u2–l2+1. Then
Ad.a[s1,s2] = Ad.a[l1, l2] + { (s2- l2) * range1+ (s1- l1) } * k

mywbut.com

 5

 = Ad.a [l1, l2] – (l2 * range1+ l1) * k + (s2 * range1+ s1) * k
 = Ad.a [0, 0] + (s2 * range1+ s1) * k

Dope vectors
An array descriptor called dope vector (DV) is used to store dimensions, lower and upper
bounds and range values of the array. A dope vector is like:

Address of a[1,1,…,1]
No. of dimensions, m
l1 u1 range1
l2 u2 range2

ln un rangen

Code generation for expressions
The major issues in code generation for an expression are as follows:

• An evaluation order for the operators in an expression is required.
• Selection of instructions to be used in the target code. This depends on the type,

length and addressability of the operand.
• Use of registers and handling partial results.

The evaluation order of operators depends on operator precedences.The choice of an
instruction depends on the following.
1. The type and length of each operand.
2. The addressability of each operand.
An operand descriptor is used to maintain the type, length and addressability of each
operand. An operand descriptor is built for every operand participating in an
instruction.
A partial result is the value of some subexpression compiled while evaluating an
expression. Partial results are maintained in CPU registers.
Operand Descriptor

 An operand descriptors has 2 fields:

ATTRIBUTE: Type, length and miscellaneous information.
ADDRESSABILITY: Specifies where the operand is located. It has 2 fields:
 Addressability code: Takes the values M (operand is in memory) and R
(operand is in register)
 Address: Address of a CPU register or memory word.

1. An operand descriptor is built for every operand participating in an expression.

Let us see an example: a*b. The operand descriptor for that is:

mywbut.com

 6

Register Descriptor

It has 2 fields:

STATUS: “Code-free” or “occupied” to indicate register status.

OPERAND DESCRIPTOR: If status is “occupied”, this field contains the descriptor for
the operand contained in the register.

Occupied #3

This indicates that the register AREG contains the operand described by descriptor
#3.

Intermediate code for expressions
This helps for easier generation of assembly code. The 3 forms are:

1. Postfix
2. Syntax Tree
3. Three address code

Postfix
General form of a postfix string is operators immediately after the operands

Example
Consider the expression ‘a+b*c+d*e^f’. The corresponding postfix string is
‘abc*+def^*+’. Usually, stacks are used to perform this conversion. The operand
descriptors are pushed into and popped from the stack as needed. Descriptors for partial
results are also used. The main advantage is that it can evaluate as well as generate the
required code. But stacks are slower.

Syntax Tree

It is a type of intermediate representation, which is similar to parse tree. The syntax tree
will have operators as roots but the parse trees will have the non terminals as their roots.
Eg: id+id

mywbut.com

 7

 Parse Tree

Syntax Tree
Three Address Codes

The three address code is a type of intermediate code, which are popularly used in
compilers. Mostly these are helpful in optimizing compilers.
 Three address codes is sequence of statements of the general form as given
below.
 A: =B op C.

Where A,B and C are identifier names, constants or compiler generated temporary
variable names and “op” represents operator, which may be any binary operator like
arithmetic operator, or relational operator, or a Boolean operator, and the symbol “:=”
stands for assignment operator.

This representation is called three address codes because it has three addresses, two for
the operands and one for the result.

Eg 1: The expression is i: =i+1

 The three address code is i: = i+1
 2. The expression is i: =i+j+k

 The three address code will be slightly different
t: =i+j
i: =t+k where t is a compiler generated temporary variable.

The three address codes are generally implemented using any one of the following
representations.

1. Triples
 2. Quadruples

mywbut.com

 8

Triples
They represent elementary operations in the form of pseudo machine instructions. Each
operand of the triple is either a variable or a constant or a result of some other evaluation.

General form of a triple is
Operator Operand1 Operand2

The expression given in the postfix example can be written in triple form as given
below

.

 Operator Operand1 Operand2
1 * b c
2 + 1 a
3 ^ e f
4 * d 3
5 + 2 4

Quadruples
They are similar to triples, except that the result has a field of its own and it is stored
in a location temporarily. So, for subsequent use, the location is referred.
General form of a quadruple is

Operator Operand1 Operand2 Result name
Here, the result name is a name. Temporary memory locations are not allocated for
this. The expression ‘a+b*c+d*e^f’ can be written in quadruple form as given below.

Operator Operand1 Operand2 Result name
* b c t1
+ t1 a t2
^ e f t3
* d t3 t4
+ t2 t4

Expression trees
• Abstract syntax tree which shows the structure of an expression.
• Simplifies analysis of expressions to determine best evaluation order.

Consider the expression ‘(a+b)/(c+d)’. This can be evaluated in two different ways.

Method 1
MOVER AREG, A
ADD AREG, B
MOVEM AREG, temp_1

mywbut.com

 9

MOVER AREG, C
ADD AREG, D
MOVEM AREG, temp_2
MOVER AREG, temp_1
DIV AREG, temp_2

Method 2
MOVER AREG, C
ADD AREG, D
MOVEM AREG, temp_1
MOVER AREG, A
ADD AREG, B
DIV AREG, temp_1

To select the best evaluation method, we can use the following algorithm. The
algorithm is performed as two steps. First we draw the expression tree and calculate
the register required for each node without using temporary locations in the bottom
up order. Then we evaluate by scanning the tree in the top down order.

Finding best evaluation method

1. Associate register requirement label with each node
2. Evaluate as

Visit all nodes in post order
 For each node ni

i. If ni is a leaf node
 If ni is left operand RR(ni) = 1
 Else RR(ni) = 0

ii. If ni is not a leaf node
 If RR(l_childni) ≠ RR(r_childni)
 RR(ni) = max(RR(l_childni), RR(r_childni))
 Else
 RR(ni) = RR(l_childni) + 1

evaluation_order (node)
{
 If node is not a leaf node
 If RR(l_childnode) <= RR(r_childnode) then
 evaluation_order(r_childnode);
 evaluation_order(l_childnode);
 else
 evaluation_order(l_childnode);
 evaluation_order(r_childnode);
 print(node);
}

mywbut.com

 10

Example
Consider the expression f + (x+y) * ((a+b) / (c-d))

mywbut.com

