

Chapter 3. Java Servlets

mywbut.com

1

3.1. Getting a Servlet Environment

You need a servlet container to run servlets. A servlet container uses a Java virtual machine to run
servlet code as requested by a web server. The servlet container is also responsible for managing other
aspects of the servlet lifecycle : user sessions, classloading, servlet contexts, servlet configuration
information, servlet persistence, and temporary storage.

Because Tomcat is the reference implementation for the Servlet API, all the examples in this chapter
have been tested with it. Tomcat 4.x supports the 2.3 API, and Tomcat 5.x supports the 2.4 API. Since
Tomcat falls under the Apache umbrella, distribution is free, and you can download a copy (including, if
you like, full source code) from http://jakarta.apache.org.Binary installations are available for Windows
and several Unix flavors.

3.2. Servlet Basics

The Servlet API consists of two packages, javax.servlet and javax.servlet.http. The javax is left
over from an earlier stage of Java package naming conventions. As mentioned (and as indicated by the
fact that this chapter appears in Part I of this book), servlets are a standard part of J2EE.

3.2.1. The Servlet Lifecycle

When a client makes a request involving a servlet, the server loads and executes the appropriate Java
classes. Those classes generate content, and the server sends the content back to the client. In most
cases, the client is a web browser, the server is a web server, and the servlet returns standard HTML.
From the web browser's perspective, this isn't any different from requesting a page generated by a CGI
script or, indeed, a static HTML file. On the server side, however, there is

Figure 3-1. The servlet lifecycle

an important difference: persistence.[*] Instead of shutting down at the end of each request, the servlet
can remain loaded, ready to handle subsequent requests. Figure 3-1 shows how this all fits together.

[*] Note that we use "persistent" to mean "enduring between invocations," not "written to
permanent storage."

mywbut.com

2

The request processing time for a servlet can vary, but it is typically quite fast when compared to a
similar CGI program. The real performance advantage of a servlet is that you incur most of the startup
overhead only once. Most of the I/O-intensive resources (such as database connection pools) your
application will need can be created by the servlet container at startup and shared by all your servlets.
Instead of connecting to the databaseor just loading your codethousands of times a day, the container
loads it only once. When the container loads a servlet for the first time, it calls the init
(ServletConfig) method, which is allowed to complete before the servlet is asked to respond to any

requests. After the init() method runs, the servlet container marks the servlet as available. For
each incoming connection directed at a particular servlet, the container calls the service() method on
the servlet to process the request. The service() method can have access to all the resources created
in the init() method. The servlet's destroy() method is called to clean up resources when the
server shuts down.

 The init() method used to be an important way to create I/O-intensive resources.
In more recent versions of the Servlet API, it has largely been supplanted by resource setup
at the application level (via ServletContextListener, discussed later in this chapter) and
at the container level.

Because servlets are persistent, you can actually remove a lot of filesystem and/or database access
altogether. For example, to implement a page counter, you can simply store a number in a static variable
rather than consulting a file (or database) for every request. Using this technique, you need to read and
write to the disk only occasionally to preserve state. Since a servlet remains active, it can perform other
tasks when it is not servicing client requests, such as running a background processing thread (i.e.,
where clients connect to the servlet to view a result) or even acting as an RMI host, enabling a single
servlet to handle connections from multiple types of clients. For example, if you write an order
processing servlet, it can accept transactions from both an HTML form and an applet using RMI.

The Servlet API includes numerous methods and classes for making application development easier.
Most common CGI tasks require a lot of fiddling on the programmer's part; even decoding HTML form
parameters can be a chore, to say nothing of dealing with cookies and session tracking. Libraries exist to
help with these tasks, but they are, of course, decidedly nonstandard. You can use the Servlet API to
handle most routine tasks, thus cutting development time and keeping things consistent for multiple
developers on a project.

3.2.2. Writing Servlets

The three core elements of the Servlet API are the javax.servlet.Servlet interface, the
javax.servlet.GenericServlet class, and the javax.servlet.http.HttpServlet class. Normally,
you create a servlet by subclassing one of the two classes, although if you are adding servlet capability
to an existing object, you may find it easier to implement the interface.

The GenericServlet class is used for servlets that don't implement any particular communication
protocol. Here's a basic servlet that demonstrates servlet structure by printing a short message:

import javax.servlet.*;
import java.io.*;

public class BasicServlet extends GenericServlet {

mywbut.com

3

 public void service(ServletRequest req, ServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/plain");
 PrintWriter out = resp.getWriter();
 // We won't use the ServletRequest object in this example
 out.println("Hello.");
 }
}

BasicServlet extends the GenericServlet class and implements one method: service(). Whenever
a server wants to use the servlet, it calls the service() method, passing ServletRequest and
ServletResponse objects (we'll look at these in more detail shortly). The servlet tells the server what
type of response to expect, gets a PrintWriter from the response object, and transmits its output.

3.2.3. HTTP Servlets

The HttpServlet class is an extension of GenericServlet that includes methods for handling HTTP-
specific data.[*] HttpServlet provides a number of methods, such as doGet(), doPost(), and doPut
(), to handle particular types of HTTP requests (GET, POST, and so on). These methods are called by
the default implementation of the service() method, which figures out what kind of request is being
made and then invokes the appropriate method. Here's a simple HttpServlet:

[*] HttpServlet is an abstract class, implemented by your servlet classes.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorldServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html>");
 out.println(
 "<head><title>Have you seen this before?</title></head>");
 out.println(

Why Two Classes?

The designers of the original Servlet API expected that it would used for a variety of
protocols above and beyond simple HTTP, hence the decision to create both a
GenericServlet and an HttpServlet class. In practice, this never happened: APIs for
other protocols use different mechanisms for content management. Prior to Version 2.3,
generic servlets were often used to filter content from other servlets, a role now assumed by
the Filter interface. Most servlets subclass HttpServlet.

mywbut.com

4

 "<body><h1>Hello, World!</h1><h6>Again.</h6></body></html>");
 }
}

HelloWorldServlet demonstrates many essential servlet concepts. First, HelloWorldServlet extends
HttpServlet. This is standard practice for an HTTP servlet. HelloWorldServlet defines one method,
doGet(), which is called whenever anyone requests a URL that points to this servlet. The doGet()
method is actually called by the default service() method of HttpServlet. The service() method
is called by the web server when a request is made of HelloWorldServlet; the method determines what
kind of HTTP request is being made and dispatches the request to the appropriate doXXX() method (in
this case, doGet()). doGet() is passed two objects, HttpServletRequest and
HttpServletResponse, that contain information about the request and provide a mechanism for the
servlet to produce output, respectively.

The doGet() method itself does three things. First, it sets the output type to text/html, which
indicates that the servlet produces standard HTML as its output. Second, it calls the getWriter()
method of the HttpServletResponse parameter to get a java.io.PrintWriter that points to the
client. Finally, it uses the stream to send some HTML back to the client. This isn't really a whole lot
different from the BasicServlet example, but it gives us all the tools we'll need later on for more
complex web applications. We do have to explicitly set the content type, as there is no default setting,
even for HTTP servlets where one might reasonably expect text/html.

If you define a doGet() method for a servlet, you may also want to override the getLastModified()
method of HttpServlet. The server calls getLastModified() to find out if the content delivered by a
servlet has changed. The default implementation of this method returns a negative number, which tells
the server that the servlet doesn't know when its content was last updated, so the server is forced to call
doGet() and return the servlet's output. If you have a servlet that changes its display data infrequently
(such as a servlet that verifies uptime on several server machines once every 15 minutes), you should
implement getLastModified() to allow browsers to cache responses. getLastModified() should
return a long value that represents the time the content was last modified as the number of milliseconds
since midnight, January 1, 1970, GMT (returned by calling the getTime() method java.util.Date).

A servlet should also implement getServletInfo(), which returns a String that contains information
about the servlet, such as name, author, and version (just like getAppletInfo() in applets). This
method is called by the web server and generally used for logging purposes. It's rarely implemented in
the real world, but it really is good practice to do so.

3.3. Web Applications

Now that we've seen a basic servlet, we can step back for a moment and talk about how servlets are
integrated into the servlet container. A web application consists of a set of resources, including servlets,
static content, JSP files, and class libraries, installed in a particular path on a web server. This path is
called the servlet context, and all servlets installed within the context are given an isolated, protected
environment to operate in, without interference from (or the ability to interfere with) other software
running on the server.

mywbut.com

5

A servlet context directory tree contains several different types of resources. These include class files
and jar files (which aren't exposed to clients connecting via web browsers), JSP files (which are
processed by the JSP servlet before being fed back to the client), and static files, such as HTML
documents and JPEG images, which are served directly to the browser by the web server.

The context has a virtual component, too. For each context, the servlet container will instantiate separate
copies of servlets and will create a private address space that can be accessed via the ServletContext
class. Servlets running in the same context can use this class to communicate with each other. We'll
discuss this more later.

The simplest servlet installations create just a single context, rooted at /, which is the top of the web
server path tree. Servlets and static content are installed within this context. Most of the time, you'll
create multiple servlet contexts , rooted lower down on the directory tree. A catalog application, for
example, could be rooted at /catalog, with all of the application paths below the context root.

If you write a web application that will be installed on multiple web servers, it isn't safe to assume the
context root will be fixed. If the path of a resource within your application is /servlet/CatalogServlet, and
it's installed within the /catalog context, rather than writing:

out.println("");

you should write:

out.println(
 "");

This approach works regardless of the context path installed within the web server. Of course, in most
cases, you shouldn't be writing HTML directly out of the servlet anywaysee Chapters 4, 5, and 19 on
JSP, JSF, and Struts for more on the separation of content and business logic in web applications.

3.3.1. Structure of Web Applications

On disk, a web application consists of a directory. The directory contains a subdirectory called WEB-
INF and whatever other content is required for the application. The WEB-INF directory contains a
classes directory (containing application code), a lib directory (containing application jar files), and a
file called web.xml. The web.xml file contains all of the configuration information for the servlets
within the context, including names, path mappings, initialization parameters, and context-level
configuration information.

The procedure for installing a web application into a servlet container varies from product to product,
but it generally consists of selecting a context root and pointing the server to the directory containing the
web application.[*]

[*] Web applications can be packaged into jar file equivalents called war files. Just use the
jar utility that comes with the JDK to pack up the web application directory (including the
WEB-INF subdirectory) and give the resulting file a .war extension, or use the war target in
an Ant script.

mywbut.com

6

3.3.2. Mapping Requests with a Context

Servlets are installed within the servlet container and mapped to URIs. This is done either via global
properties that apply to all servlets or by specific, servlet-by-servlet mappings. In the first case, a client
invokes a servlet by requesting it by name. Some servers map servlets to a /servlet/ or /servlets/ URL. If
a servlet is installed as PageServlet, a request to /servlet/PageServlet would invoke it. Servlets can also
be individually mapped to other URIs or to file extensions. PageServlet might be mapped
to /pages/page1 or to all files with a .page extension (using *.page).

All of these mappings exist below the context level. If the web application is installed at /app, the paths
entered into the browser for the examples earlier would be /app/servlet/PageServlet, /app/pages/page1,
or /app/file.page. Of course, if they are entered into a browser, these paths represent only the end of the
full URL, which must also include the protocol, host, and port information (e.g.,
http://myserver.org:8080).

To illustrate, imagine the servlet mappings (all are below the context root) in Table 3-1.

The asterisk serves as a wildcard. URIs matching the pattern are mapped to the specified servlet,
provided that another mapping hasn't already been used to deal with the URL. This can get a little tricky
when building complex mapping relationships, but the Servlet API does require servers to deal with
mappings consistently. When the servlet container receives a request, it always maps it to the
appropriate servlet in the following order:

1. Exact path matching

A request to /store/furniture/chairs is served by ChairServlet.

2. Prefix mapping

A request to /store/furniture/sofas is served by FurnitureServlet. The longest matching prefix is
used. A request to /store/furniture/tables/dining is served by TableServlet.

3. Extension

Requests for /info/contact.page are served by PageServlet. However, requests
for /store/furniture/chairs/about.page is served by FurnitureServlet (since prefix mappings are
checked first, and ChairServlet is available only for exact matches).

If no appropriate servlet is found, the server returns an error message or attempts to serve content on its

Table 3-1. Example servlet mappings

Mapping Servlet

/store/furniture/* FurnitureServlet

/store/furniture/tables/* TableServlet

/store/furniture/chairs ChairServlet

*.page PageServlet

mywbut.com

7

own. If a servlet is mapped to the / path, it becomes the default servlet for the application and is invoked
when no other servlet is found.

3.3.3. Context Methods

Resources within a servlet context (such as HTML files, images, and other data) can be accessed directly
via the web server. If a file called index.html is stored at the root of the /app context, then it can be
accessed with a request to /app/index.html. Context resources can also be accessed via the
ServletContext object, which is accessed via the getresource() and getresourceAsStream()
methods . A full list of available resources can be accessed via the getresourcePaths() method. In
this case, an InputStream containing the contents of the index.html file can be retrieved by calling
getresourceAsStream("/index.html") on the ServletContext object associated with the /app
context.

The ServletContext interface provides servlets with access to a range of information about the local
environment. The getInitParameter() and getInitParameterNames() methods allow servlets to
retrieve context-wide initialization parameters. ServletContext also includes a number of methods that
allow servlets to share attributes. The setAttribute() method allows a servlet to set an attribute that
can be shared by any other servlets that live in its ServletContext, and removeAttribute() allows a
servlet to remove an attribute from the application context. The getAttribute() method, which
previously allowed servlets to retrieve hardcoded server attributes, provides access to attribute values,
while getAttributeNames() returns an Enumeration of all the shared attribute names.

The servlet container is required to maintain a temporary working directory on disk for each servlet
context. This directory is accessed by retrieving the javax.servlet.context.tempdir attribute, which
consists of a java.io.File object pointing to the temporary directory. Each servlet must have its own
temporary directory. The servlet container is not required to maintain its contents across restarts, so if
you store something there, it may not be there if the servlet container restarts.

3.4. Servlet Requests

When a servlet handles a request, it typically needs specific information about the request so that it can
respond appropriately. Most frequently, a servlet retrieves the value of a form variable and uses that
value in its output. A servlet may also need access to information about the environment in which it is
running. For example, a servlet may need to authenticate the user who is accessing the servlet.

The ServletRequest and HttpServletRequest interfaces provide access to this kind of information.
When a servlet is asked to handle a request, the servlet container passes it a request object that
implements one of these interfaces. With this object, the servlet can determine the actual request (e.g.,
protocol, URL, type), access parts of the raw request (e.g., headers, input stream), and get any client-
specific request parameters (e.g., form variables, extra path information). For instance, the getProtocol
() method returns the protocol used by the request, while geTRemoteHost() returns the name of the
client host. The interfaces also provide methods that let a servlet get information about the server (e.g.,
getServername(), getServerPort()). As we saw earlier, the getParameter() method provides
access to request parameters such as form variables. There is also the getParameterValues() method,
which returns an array of strings that contains all the values for a particular parameter. This array

mywbut.com

8

generally contains only one string, but some HTML form elements (as well as non-HTTP-oriented
services) do allow multiple selections or options, so the method always returns an array, even if it has a
length of 1.

HttpServletRequest adds a few more methods for handling HTTP-specific request data. For instance,
getHeaderNames() returns an enumeration of the names of all the HTTP headers submitted with a
request, while getHeader() returns a particular header value. Other methods handle cookies and
sessions, as we'll discuss later.

Example 3-1 shows a servlet that restricts access to users who are connecting via the HTTPS protocol,
using digest-style authentication and coming from a government site (a domain ending in .gov). The
restrictions are implemented by checking information pulled from the servlet request using many of the
methods described earlier.

Example 3-1. Checking request information to restrict servlet access

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SecureRequestServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html>");
 out.println("<head><title>Semi-Secure Request</title></head>");
 out.println("<body>");

 String remoteHost = req.getRemoteHost();
 String scheme = req.getScheme();
 String authType = req.getAuthType();

 if((remoteHost == null) || (scheme == null) || (authType == null)) {
 out.println("Request Information Was Not Available.");
 return;
 }

 if(scheme.equalsIgnoreCase("https") && remoteHost.endsWith(".gov")
 && authType.equals("Digest")) {
 out.println("Special, secret information.");
 }
 else {
 out.println("You are not authorized to view this data.");
 }

 out.println("</body></html>");
 }
}

3.4.1. Forms and Interaction

mywbut.com

9

The problem with creating a servlet like our earlier HelloWorldServlet is that it doesn't do anything
we can't already do with HTML. If we are going to bother with a servlet at all, we should do something
dynamic and interactive with it. In many cases, this means processing the results of an HTML form. To
make our example less impersonal, let's have it greet the user by name. The HTML form that calls the
servlet using a GET request might look like this:

<html>
<head><title>Greetings Form</title></head>
<body>
<form method=get action="/servlet/HelloServlet">
What is your name?
<input type=text name="username" size=20>
<input type=submit value="Introduce Yourself">
</form>
</body>
</html>

This form submits a form variable named username to /servlet/HelloServlet. The HelloServlet itself
does little more than create an output stream, read the username form variable, and print a nice greeting
for the user. Here's the code:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html>");
 out.println("<head><title>Finally, interaction!</title></head>");
 out.println("<body><h1>Hello, " + req.getParameter("username")
 + "!</h1>");
 out.println("</body></html>");
 }
}

All we've done differently is use the getParameter() method of HttpServletRequest to retrieve the
value of a form variable.[*] When a server calls a servlet, it can also pass a set of request parameters.
With HTTP servlets, these parameters come from the HTTP request itselfin this case, in the guise of
URL-encoded form variables. Note that a GenericServlet running in a web server also has access to
these parameters using the simpler ServletRequest object. When HelloServlet runs, it inserts the
value of the username form variable into the HTML output, as shown in Figure 3-2.

[*] For those interested in ancient history, in Java Web Server 1.1, the getParameter()
method was deprecated in favor of getParameterValues(), which returns a String array
rather than a single string. However, after an extensive write-in campaign, Sun took
getParameter() off the deprecated list for Version 2.0 of the Servlet API, so you can

mywbut.com

10

safely use this method in your servlets. This is not an issue with later versions of the API,
and the fact that we even talk about it dates us.

Figure 3-2. Output from HelloServlet

3.4.2. POST, HEAD and Other Requests

As mentioned earlier, doGet() is just one of a collection of enabling methods for HTTP request types.
doPost() is the corresponding method for POST requests . The POST request is designed for posting
information to the server, although in practice it is also used for long parameterized requests and larger
forms, to get around limitations on the length of URLs.

If your servlet is performing database updates, charging a credit card, or doing anything that takes an
explicit client action, you should make sure this activity is happening in a doPost() method because
POST requests aren't idempotent, which means that they aren't safely repeatable, and web browsers treat
them specially. For example, a browser can't bookmark or, in some cases, reload a POST request. On the
other hand, GET requests are idempotent, so they can safely be bookmarked, and a browser is free to
issue the request repeatedly without necessarily consulting the user. You can see why you don't want to
charge a credit card in a GET method!

To create a servlet that can handle POST requests, all you have to do is override the default doPost()
method from HttpServlet and implement the necessary functionality in it. If necessary, your
application can implement different code in doPost() and doGet(). For instance, the doGet()
method might display a postable data entry form that the doPost() method processes. doPost() can
even call doGet() at the end to display the form again.

The less common HTTP request types, such as HEAD, PUT, TRACE, and DELETE, are handled by
other doXXX() dispatch methods. A HEAD request returns HTTP headers only, PUT and DELETE
allow clients to create and remove resources from the web server, and TRACE returns the request
headers to the client. Since most servlet programmers don't need to worry about these requests, the
HttpServlet class includes a default implementation of each corresponding doXXX() method that
either informs the client that the request is unsupported or provides a minimal implementation. You can
provide your own versions of these methods, but the details of implementing PUT or DELETE
functionality go rather beyond our scope.

mywbut.com

11

3.5. Servlet Responses

In order to do anything useful, a servlet must send a response to each request that is made to it. In the
case of an HTTP servlet, the response can include three components: a status code, any number of
HTTP headers, and a response body.

The ServletResponse and HttpServletResponse interfaces include all the methods needed to create
and manipulate a servlet's output. We've already seen that you specify the MIME type for the data
returned by a servlet using the setContentType() method of the response object passed into the
servlet. With an HTTP servlet, the MIME type is generally text/html, although some servlets return
binary data: a servlet that loads a GIF file from a database and sends it to the web browser should set a
content type of image/gif, while a servlet that returns an Adobe Acrobat file should set it to
application/pdf.

ServletResponse and HttpServletResponse each define two methods for producing output streams,
getOutputStream() and getWriter(). The former returns a ServletOutputStream, which can be
used for textual or binary data. The latter returns a java.io.PrintWriter object, which is used only for
textual output. The getWriter() method examines the content type to determine which charset to use,
so setContentType() should be called before getWriter().

HttpServletResponse also includes a number of methods for handling HTTP responses . Most of these
allow you to manipulate the HTTP header fields. For example, setHeader(), setIntHeader(), and
setDateHeader() allow you to set the value of a specified HTTP header, while containsHeader()
indicates whether a certain header has already been set. You can use either the setStatus() or
sendError() method to specify the status code sent back to the client. HttpServletResponse
provides a long list of integer constants that represent specific HTTP status codes (we'll see some of
these shortly). You typically don't need to worry about setting a status code, as the default code is 200
("OK"), meaning that the servlet sent a normal response. However, a servlet that is part of a complex
application structure (such as serving XML content to an AJAX-based dynamic web interface) may need
to use a variety of status codes. Finally, the sendRedirect() method allows you to issue a page
redirect. Calling this method sets the Location header to the specified location and uses the appropriate
status code for a redirect.

3.5.1. Request Dispatching

Request dispatching allows a servlet to delegate request handling to other components on the server. A
servlet can either forward an entire request to another servlet or include bits of content from other
components in its own output. In either case, this is done with a RequestDispatcher object that is
obtained from the ServletContext via the getrequestDispatcher() method (also available via the
HttpServletRequest object). When you call this method, you specify the path to the servlet to which
you are dispatching the request. The path should be relative to the servlet context. If you want to
dispatch a request to /servlet/TargetServlet within the /app context (which is accessed from a user's
browser by /app/servlet/TargetServlet), request a dispatcher for /servlet/TargetServlet.

When you dispatch a request, you can set request attributes using the setAttribute() method of
ServletRequest and read them using the getAttribute() method. A list of available attribute names
is returned by getAttributeNames(). Rather than taking only String objects (like parameters), an
attribute may be any valid Java object.

mywbut.com

12

RequestDispatcher provides two methods for dispatching requests: forward() and include(). To
forward an entire request to another servlet, use the forward() method. When using forward(), the
ServletRequest object is updated to include the new target URL. If a ServletOutputStream or
PrintWriter has already been retrieved from the ServletResponse object, the forward() method
throws an IllegalStateException.

The include() method of RequestDispatcher causes the content of the dispatchee to be included in
the output of the main servlet, just like a server-side include. To see how this works, let's look at part of
a servlet that does a keep-alive check on several different servers. The ServerMonitorServlet
referenced in this example relies on the serverurl attribute to determine which server to display
monitoring information for:

out.println("Uptime for our servers");
// Get a RequestDispatcher to the ServerMonitorServlet
RequestDispatcher d = getServletContext().
 getRequestDispatcher("/servlet/ServerMonitorServlet");
req.setAttribute("serverurl", new URL("http://www1.company.com"));
d.include(req, res);
req.setAttribute("serverurl", new URL("http://www2.company.com"));
d.include(req, res);

Request dispatching is obviously different from issuing an HTTP redirect (via the sendRedirect()
method of HttpResponse) since everything takes place within a single server request. Using a forward
rather than a redirect gives a better user experience since content is displayed in the browser without two
round-trips to the server. However, when you forward a request, the apparent URL (from the browser's
perspective) remains the original request URL. This can break relative links and sometimes leads to
confusing caching behavior on the browser. It is a good practice to avoid relative links wherever
possibleencode the full server-side path, starting with the context name, instead.

3.5.2. Error Handling

Sometimes things just go wrong. When that happens, it's nice to have a clean way out. The Servlet API
gives you two ways of to deal with errors: you can manually send an error message back to the client or
you can throw a ServletException. The easiest way to handle an error is simply to write an error
message to the servlet's output stream. This is the appropriate technique to use when the error is part of a
servlet's normal operation, such as when a user forgets to fill in a required form field.

3.5.2.1. Status codes

When an error is a standard HTTP error, you should use the sendError() method of
HttpServletResponse to tell the server to send a standard error status code. HttpServletResponse
defines integer constants for all the major HTTP status codes . Table 3-2 lists the most common status
codes. For example, if a servlet can't find a file the user has requested, it can send a 404 ("File Not
Found") error and let the browser display it in its usual manner. In this case, we can replace the typical
setContentType() and getWriter() calls with something like this:

response.sendError(HttpServletResponse.SC_NOT_FOUND);

If you want to specify your own error message (in addition to the web server's default message for a
particular error code), you can call sendError() with an extra String parameter:

mywbut.com

13

response.sendError(HttpServletResponse.SC_NOT_FOUND,
 "It's dark. I couldn't find anything.");

3.5.2.2. Servlet exceptions

The Servlet API includes two Exception subclasses, ServletException and its derivative,
UnavailableException. A servlet throws a ServletException to indicate a general servlet problem.

Table 3-2. Some common HTTP status codes

Constant Code
Default
message

Meaning

SC_OK 200 OK The client's request succeeded, and the server's
response contains the requested data. This is
the default status code.

SC_NO_CONTENT 204 No Content The request succeeded, but there is no new
response body to return. A servlet may find this
code useful when it accepts data from a form,
but wants the browser view to stay at the form.
It avoids the "Document contains no data"
error message.

SC_MOVED_PERMANENTLY 301 Moved
Permanently

The requested resource has permanently moved
to a new location. Any future reference should
use the new location given by the Location
header. Most browsers automatically access the
new location.

SC_MOVED_TEMPORARILY 302 Moved
Temporarily

The requested resource has temporarily moved
to another location, but future references
should still use the original URL to access the
resource. The temporary new location is given
by the Location header. Most browsers
automatically access the new location.

SC_UNAUTHORIZED 401 Unauthorized The request lacked proper authorization. Used
in conjunction with the WWW-Authenticate
and Authorization headers.

SC_NOT_FOUND 404 Not Found The requested resource is not available.

SC_INTERNAL_SERVER_ERROR 500 Internal
Server Error

An error occurred inside the server that
prevented it from fulfilling the request.

SC_NOT_IMPLEMENTED 501 Not
Implemented

The server doesn't support the functionality
needed to fulfill the request.

SC_SERVICE_UNAVAILABLE 503 Service
Unavailable

The server is temporarily unavailable, but
service should be restored in the future. If the
server knows when it will be available again, a
Retry-After header may also be supplied.

mywbut.com

14

When a server catches this exception, it can handle the exception however it sees fit.

UnavailableException is a bit more useful, however. When a servlet throws this exception, it is
notifying the server that it is unavailable to service requests. You can throw an UnavailableException
when some factor beyond your servlet's control prevents it from dealing with requests. To throw an
exception that indicates permanent unavailability, use something like this:

throw new UnavailableException(this,
 "This is why you can't use the servlet.");

UnavailableException has a second constructor to use if the servlet is going to be temporarily
unavailable. With this constructor, you specify how many seconds the servlet is going to be unavailable,
as follows:

throw new UnavailableException(120, this, "Try back in two minutes");

One caveat: the servlet specification does not mandate that servers actually try again after the specified
interval. If you choose to rely on this capability, you should test it first with the container you plan to
deploy on.

3.5.2.3. A file-serving servlet

Example 3-2 demonstrates both of these error-handling techniques, along with another method for
reading data from the server. FileServlet reads a pathname from a form parameter and returns the
associated file. Note that this servlet is designed to return only HTML files. If the file can't be found, the
servlet sends the browser a 404 error. If the servlet lacks sufficient access privileges to load the file, it
sends an UnavailableException instead. Keep in mind that this servlet is a teaching exercise: you
should not deploy it on your web server. (For one thing, any security exception renders the servlet
permanently unavailable, and for another, it can serve files from the root of your hard drive.)

Example 3-2. Serving files

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class FileServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 File r;
 FileReader fr;
 BufferedReader br;
 try {
 r = new File(req.getParameter("filename"));
 fr = new FileReader(r);
 br = new BufferedReader(fr);
 if(!r.isFile()) { // Must be a directory or something else
 resp.sendError(resp.SC_NOT_FOUND);
 return;
 }

mywbut.com

15

 }
 catch (FileNotFoundException e) {
 resp.sendError(resp.SC_NOT_FOUND);
 return;
 }
 catch (SecurityException se) { // Be unavailable permanently
 throw(new UnavailableException(
 "Servlet lacks appropriate privileges."));
 }

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();
 String text;
 while((text = br.readLine()) != null)
 out.println(text);

 br.close();
 }
}

3.6. Custom Servlet Initialization

At the beginning of this chapter, we talked about how a servlet's persistence can be used to build more
efficient web applications. This is accomplished via class variables and the init() method. When a
server loads a servlet for the first time, it calls the servlet's init() method and does not make any
service calls until init() has finished. In the default implementation, init() simply handles some
basic housekeeping, but a servlet can override the method to perform whatever one-time tasks are
required. This often means doing some sort of I/O-intensive resource creation, such as opening a
database connection. You can also use the init() method to create threads that perform various
ongoing tasks. For instance, a servlet that monitors the status of machines on a network might create a
separate thread to periodically ping each machine. When an actual request occurs, the service methods
in the servlet can use the resources created in init(). Thus, the status monitor servlet might display an
HTML table with the status of the various machines.

The default init(ServletConfig) implementation is not a do-nothing method, so you should
remember to always call the super.init(ServetConfig) method. If you override the parameterless
version, you don't have to invoke the superclass's methodthe server calls the parameterized version,
which calls the parameterless method. You can access the ServletConfig object using the
getServletConfig() method.

The server passes the init() method a ServletConfig object, which can include specific servlet
configuration parameters (for instance, the list of machines to monitor). ServletConfig encapsulates
the servlet initialization parameters, which are accessed via the getInitParameter() and
getInitParameterNames() methods. GenericServlet and HttpServlet both implement the
ServletConfig interface, so these methods are always available in a servlet and they access the servlet's
ServletConfig to retrieve these parameters. Init parameters are set using the <init-param> elements
for the <servlet> in the web.xml deployment descriptor (see

mywbut.com

16

Every servlet also has a destroy() method that can be overwritten. This method is called when, for
whatever reason, a server unloads a servlet. You can use this method to ensure that important resources
are freed or that threads are allowed to finish executing unmolested. Unlike init(), the default
implementation of destroy() is a do-nothing method, so you don't have to worry about invoking the
superclass's destroy() method.

Example 3-3 shows a counter servlet that saves its state between server shutdowns. It uses the init()
method to first try to load a default value from a servlet initialization parameter. Next the init()
method tries to open a file named /data/counter.dat and read an integer from it. When the servlet is shut
down, the destroy() method creates a new counter.dat file with the current hit count for the servlet.

Example 3-3. A persistent counter servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class LifeCycleServlet extends HttpServlet {

 int timesAccessed;

 public void init(ServletConfig conf) throws ServletException {

 super.init(conf);

 // Get initial value
 try {
 timesAccessed = Integer.parseInt(getInitParameter("defaultStart"));
 }
 catch(NullPointerException e) {
 timesAccessed = 0;
 }
 catch(NumberFormatException e) {
 timesAccessed = 0;
 }

 // Try loading from the disk
 DataInputStream ds = null;
 try {
 File r = new File("./data/counter.dat");
 DataInputStream ds = new DataInputStream(new FileInputStream(r));
 timesAccessed = ds.readInt();
 }
 catch (FileNotFoundException e) {
 // Handle error
 }
 catch (IOException e) {
 // This should be logged
 }
 finally {
 if (ds !=null)
 try {
 ds.close();
 } catch (IOException ignored) {}
 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

mywbut.com

17

 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 timesAccessed++;

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Life Cycle Servlet</title>");
 out.println("</head><body>");

 out.println("I have been accessed " + timesAccessed + " time[s]");
 out.println("</body></html>");
 }

 public void destroy() {

 // Write the Integer to a file
 File r = new File("./data/counter.dat");
 DataOutputStream dout = null;
 try {
 dout = new DataOutputStream(new FileOutputStream(r));
 dout.writeInt(timesAccessed);
 }
 catch(IOException e) {
 // This should be logged
 }
 finally {
 try dout.close(); catch (IOException ignored) {}
 }
 }
}

3.6.1. Servlet Context Initialization

Version 2.3 of the Servlet API added support for application-level events using a listener-style interface.
Classes that implement the ServletContextListener interface can be associated with a servlet context
and are notified when the context is initialized or destroyed. This provides programmers with the
opportunity to create application-level resources, such as database connection pools, before any servlets
are initialized and to share single resources among multiple servlets using the ServletContext attribute
functionality.

ServletContextListener contains two methods, contextInitialized() and contextDestroyed
(), which take a ServletContextEvent. Context listeners are associated with their context in the
web.xml file for the web application (see Appendix A for details on configuring contexts in the web.xml
file). Example 3-4 defines a listener that creates a hashtable of usernames and unencrypted passwords
and associates it as a context attribute. We use it in a later example.

Example 3-4. A servlet context listener

import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;

public class ContextResourceLoader implements ServletContextListener {

mywbut.com

18

 public void contextInitialized(ServletContextEvent sce) {
 java.util.Hashtable users = new Hashtable();
 users.put("test", "test");
 users.put("admin", "bob3jk");
 sce.getServletContext().setAttribute("enterprise.users", users);
 }

 public void contextDestroyed(ServletContextEvent sce) {
 // This is where we clean up resources on server shutdown/restart
 }
}

Obviously, a real application would manage usernames and passwords in a more robust fashion, such as
by storing them in a database. In this case, we can count on the JVM to properly garbage-collect the
Hashtable object. If we do something more complex (such as maintaining a pool of connections to a
relational database), we would use the contextDestroyed() method to make sure those resources are
properly freed.

3.7. Security

Servlets don't have to handle their own security arrangements. Instead, they can rely on the capabilities
of the web server to limit access where required. The security capabilities of most web servers are
limited to basic on-or-off access to specific resources, controlled by username and password (or digital
certificate), with possible encryption using SSL. Most servers are limited to basic authentication, which
transmits passwords more or less in the clear, while some support the more advanced digest
authentication protocol, which works by transmitting a hash of the user's password and a server-
generated value rather than the password itself. Both of these approaches look the same to the user; the
familiar "Enter Username and Password" window pops up in the web browser.

Recent versions of the Servlet API take a much less hands-off approach to security. The web.xml file
can define which servlets and resources are protected and which users have access. The user access
model is the J2EE User-Role model, in which users can be assigned one or more roles. Users with a
particular role are granted access to protected resources. A user named Admin might have both the
Administrator role and the User role while users Bob and Ted might have only the User role. (See
Chapter 10 for more details about J2EE security.)

In addition to basic, digest, and SSL authentication, the web application framework allows for HTML
form-based logins. This approach allows the developer to specify an HTML or JSP page containing a
form like the following:

<form method="post" action="j_security_check">
<input type="text" name="j_username">
<input type=password" name="j_password">
<input type="submit" value="Log In">
</form>

Note that form-based authentication is insecure and works only if the client session is being tracked via

mywbut.com

19

cookies or SSL signatures.

The HttpServletRequest interface includes a pair of basic methods for retrieving standard HTTP user
authentication information from the web server. If your web server is equipped to limit access, a servlet
can retrieve the username with getremoteUser() and the authentication method (basic, digest, or
SSL) with getAuthType(). Version 2.2 of the Servlet API added the isUserInRole() and
getUserPrincipal() methods to HttpServletRequest. isUserInRole() allows the program to
query whether the current user has a particular role (useful for dynamic content decisions that cannot be
made at the container level). The getUserPrincipal() method returns a java.security.Principal
object identifying the current user.

3.8. Servlet Filters

Version 2.3 of the Servlet API introduced a new method of handling requests using the
javax.servlet.Filter class. When filters are used, the servlet container creates a filter chain, which
consists of zero or more Filter objects and a destination resource, either a servlet or another resource
available on the web server (such as an HTML or JSP file).

Filters are installed in the server and associated with particular request paths (just like servlets). When a
filtered resource is requested, the servlet constructs a filter chain and calls the doFilter() method of
the first filter in the filter chain, passing a ServletRequest, a ServletResponse, and the FilterChain
object. The filter can then perform processing on the request. Filters are often used to implement
logging, control security, or set up connection-specific objects. A filter can also wrap the
ServletRequest and ServletResponse classes with its own versions, overriding particular methods.
For instance, one of the example filters included with the Tomcat server adds support for returning
compressed output to browsers that support it.

After the filter has processed the response, it can call the doFilter() method of the FilterChain to
invoke the next filter in the sequence. If there are no more filters, the request is passed on to its ultimate
destination. After calling doFilter(), the filter can perform additional processing on the response
received from farther down the chain.

In the event of an error, the filter can stop processing, returning to the client whatever response has
already been created or forwarding the request to a different resource.

Example 3-5 provides a form-based authentication filter that could be customized to provide additional
functionality. It works by intercepting each request and checking the HttpSession for an attribute
called enterprise.login. If that attribute contains a Boolean.TRUE, access is permitted. If not, the
filter checks for request parameters named login_name and login_pass and searches for a match in a
hashtable containing valid username/password pairs. If valid login credentials are found, filter chain
processing continues. If not, the user is served a login page located at /login.jsp, retrieved via a
RequestDispatcher.[*]

[*] This isn't a highly secure system. Unless the client has connected via SSL, the
username/password combination is transmitted unencrypted over the Internet. Also,
successful logins leave the login_name and login_pass parameters in the request when
processing it, potentially making them available to a malicious JSP file or servlet. This can

mywbut.com

20

be an issue when designing a shared security scheme for dynamic content created by a
group of different users (such as at an ISP). One way to get around this is to create a custom
HttpServletRequest wrapper that filters out the login_name and login_pass parameters
for filters and resources further down the chain.

Astute readers will note that we try to retrieve the user's hashtable from a servlet context attribute. We
showed how to set this attribute at the web application level earlier in the chapter. In case you don't have
that set up, the filter's init() method will create its own if it can't find one in the context.

Example 3-5. AuthenticationFilter

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Hashtable;

public class AuthenticationFilter implements Filter {

 private Hashtable users = null;
 public void init(FilterConfig config)
 throws javax.servlet.ServletException {

 users = (Hashtable)config.getServletContext().getAttribute(
 "enterprise.users");
 if(users == null) {
 users = new Hashtable(5);
 users.put("test", "test");
 }
 }

 public void doFilter(
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException {

 HttpServletRequest request = (HttpServletRequest)req;
 HttpSession sess = request.getSession(true);

 if(sess != null) {
 Boolean loggedIn = (Boolean)sess.getAttribute("enterprise.login");
 if (loggedIn != Boolean.TRUE) {
 String login_name = request.getParameter("login_name");
 String login_pass = request.getParameter("login_pass");
 if((login_name != null) && (login_pass != null))
 if(users.get(login_name).toString().equals(login_pass)) {
 loggedIn = Boolean.TRUE;
 sess.setAttribute("enterprise.login", Boolean.TRUE);
 sess.setAttribute("enterprise.loginname", login_name);
 }
 }

 if (loggedIn == Boolean.TRUE) {
 chain.doFilter(req, res);
 } else {
 request.setAttribute("originaluri", request.getRequestURI());
 request.getRequestDispatcher("/login.jsp").forward(req, res);
 }
 }
 }

mywbut.com

21

 public void destroy() {
 // Code cleanup would be here
 }
}

Here's the JSP page used to display the login form. The important thing to note is that the form submits
back to the original URI. The filter uses the setAttribute() method of HttpServletRequest to
specify the URI to post the form back to; the filter is then reapplied, and if the user has provided
appropriate credentials, access to the resource is granted. For more on JSP, see Chapter 4.

<html><body bgcolor="white">

<% out.print ("<form method=post
action=\""+request.getAttribute("originaluri").toString() +"\">"); %>

Login Name: <input type=text name="login_name">

Password: <input type=password name="login_pass">
<input type=submit value="Log In">
</form>

</body></html>

When configuring the filter (we'll see an example in the next section), map it only to the paths you wish
to protect. Mapping it to /* will not work since that would also protect the login.jsp file. If you did want
to protect your whole application, you could build the login form into the filter, but that's not good
practiceyou have to recompile for every change.

3.8.1. Filters and Request Dispatchers

In the original filter specification, a filter would run only in response to an original request from a
remote client. Requests created internally via the RequestDispatcher class would not trigger new filter
chains. The example in the previous section relies on this behaviorotherwise the filter would never be
able to display the login.jsp file.

Servlet API 2.4 gives us a little more flexibility here. When declaring a filter mapping in web.xml, we
can indicate whether it runs on requests only (the default) or whether it runs on includes, forwards, or
any combination of the three. For example:

<filter-mapping>
 <filter-name>Authentication Filter</filter-name>
 <url-pattern>/secrets/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

This configuration causes the filter to run on request forwards as well as request dispatches, ensuring
that security is applied even if an unprotected portion of the application redirects the user to a protected
portion. However, use this power with care: many applications, including the various web application
frameworks, make extensive use of request forwarding, which could cause the filter to run several times
in the course of a single user request.

mywbut.com

22

3.9. Thread Safety

In a typical scenario, only one copy of any particular servlet or filter is loaded into the server's runtime at
any given time. Each servlet might, however, be called upon to deal with multiple requests at the same
time. This means that a servlet needs to be threadsafe. If a servlet doesn't use any class variables (that is,
any variables with a scope broader than the service method itself), it is generally already threadsafe. If
you are using any third-party libraries or extensions, make sure that those components are also
threadsafe. However, a servlet that maintains persistent resources needs to make sure that nothing
untoward happens to those resources. Imagine, for example, a servlet that maintains a bank balance
using an int in memory.[*] If two servlets try to access the balance at the same time, you might get this
sequence of events:

[*] Hey, bear with us on this. It's an example.

1. User 1 connects to the servlet to make a $100 withdrawal.

2. The servlet checks the balance for User 1, finding $120.

3. User 2 connects to the servlet to make a $50 withdrawal.

4. The servlet checks the balance for User 2, finding $120.

5. The servlet debits $100 for User 1, leaving $20.

6. The servlet debits $50 for User 2, leaving -$30.

7. The programmer is fired.

Obviously, this is incorrect behavior, particularly that last bit. We want the servlet to perform the
necessary action for User 1, and then deal with User 2 (in this case, by giving him an insufficient funds
message). We can do this by surrounding sections of code with synchronized blocks. While a particular
synchronized block is executing, no other sections of code that are synchronized on the same object
(usually the servlet or the resource being protected) can execute. For more information on thread safety
and synchronization, see Java Threads by Scott Oaks and Henry Wong (O'Reilly).

Example 3-6 implements the ATM display for the First Bank of Java. The doGet() method displays
the current account balance and provides a small ATM control panel for making deposits and

withdrawals, as shown in Figure 3-3.[]

[] Despite the fact that Java is a very large island, there's still only one account.

Figure 3-3. The First Bank of Java ATM display

mywbut.com

23

The control panel uses a POST request to send the transaction back to the servlet, which performs the
appropriate action and calls doGet() to redisplay the ATM screen with the updated balance.

Example 3-6. An ATM servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.io.*;

public class AtmServlet extends HttpServlet {

 Account act;

 public void init(ServletConfig conf) throws ServletException {
 super.init(conf);
 act = new Account();
 act.balance = 0;
 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html><body>");
 out.println("<h2>First Bank of Java ATM</h2>");
 out.println("Current Balance: " + act.balance + "
");
 out.println("<form method=post>");
 out.println("Amount: <input type=text name=AMOUNT size=3>
");
 out.println("<input type=submit name=DEPOSIT value=\"Deposit\">");
 out.println("<input type=submit name=WITHDRAW value=\"Withdraw\">");
 out.println("</form>");
 out.println("</body></html>");
 }

 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

mywbut.com

24

 int amt=0;
 try {
 amt = Integer.parseInt(req.getParameter("AMOUNT"));
 }
 catch (NullPointerException e) {
 // No Amount parameter passed
 }
 catch (NumberFormatException e) {
 // Amount parameter was not a number
 }

 synchronized(act) {
 if((req.getParameter("WITHDRAW") != null) && (amt < act.balance))
 act.balance = act.balance - amt;
 if((req.getParameter("DEPOSIT") != null) && (amt > 0))
 act.balance = act.balance + amt;
 } // End synchronized block

 doGet(req, resp); // Show ATM screen
 }

 public void destroy() {
 // This is where we would save the balance to a file
 }

 class Account {
 public int balance;
 }
}

The doPost() method alters the account balance contained within an Account object act (since
Account is so simple, we've defined it as an inner class). In order to prevent multiple requests from
accessing the same account at once, any code that alters act is synchronized on act. This ensures that
no other code can alter act while a synchronized section is running.

The destroy() method is defined in the AtmServlet, but it contains no actual code. A real banking
servlet would obviously want to write the account balance to disk before being unloaded. And if the
servlet were using JDBC to store the balance in a database, it would also want to destroy all its database-
related objects.

Servlet API 2.4 deprecates the SingleThreadModel interface, which was a tag
interface to identify a servlet that could serve only one request at a time. Since
SingleThreadModel could not resolve all potential threading issues, it has been
deprecated and should not be used in new development.

3.10. Cookies

Very few software features have caused as much public confusion and outcry as the HTTP cookie.

mywbut.com

25

Ethical and moral considerations aside, cookies allow a web server to store small amounts of data on
client systems. Cookies are generally used to store basic user identification or configuration information.
Because a cookie's value can uniquely identify a client, cookies are often used for session tracking
(although, as we'll see shortly, the Servlet API provides higher-level support for this).[*]

[*] The cookie standard is spelled out in RFC 2965, available at http://rfc.net/rfc2965.html.

To create a cookie, the server (or, more precisely, a web application running on the server) includes a
Cookie header with a specific value in an HTTP response. The browser then transmits a similar header
with that value back to the server with subsequent requests, which are subject to certain rules. The web
application can use the cookie value to keep track of a particular user, handle session tracking, and so
forth. Because cookies use a single Cookie header, the syntax for a cookie allows for multiple
name/value pairs in the overall cookie value.

The Servlet API includes a class, javax.servlet.http.Cookie, that abstracts cookie syntax and makes
cookies easy to work with. In addition, HttpServletResponse provides an addCookie() method and
HttpServletRequest provides a getCookies() method to aid in writing cookies to and reading
cookies from the HTTP headers, respectively. To find a particular cookie, a servlet needs to read the
entire collection of values and look through it:

Cookie[] cookies;
cookies = req.getCookies();
String userid = null;

for (int i = 0; i < cookies.length; i++)
 if (cookies[i].getName().equals("userid"))
 userid = cookies[i].getAttribute();

A cookie can be read at any time but can be created only before any content is sent to the client. This is
because cookies are sent using HTTP headers. These headers can be sent to the client before the regular
content. Once any content has been written to the client, the server can flush the output and send the
headers at any time, so you can't create any new cookies safely. You must create new cookies before
sending any content. Here's an example of creating a cookie:

String userid = createUserID(); // Create a unique ID
Cookie c = new Cookie("userid", userid);
resp.addCookie(c); // Add the cookie to the HTTP headers

Note that a web browser is required to accept only 20 cookies per site and 300 total per user, and the
browser can limit each cookie's size to 4096 bytes.

Cookies can be customized to return information only in specific circumstances. In particular, a cookie
can specify a particular domain, a particular path, an age after which the cookie should be destroyed, and
whether the cookie requires a secure (HTTPS) connection. A cookie is normally returned only to the
host that specified it. For example, if a cookie is set by server1.company.com, it isn't returned to
server2.company.com. You can get around this limitation by setting the domain to .company.com with
the setDomain() method of Cookie. By the same token, a cookie is generally returned for pages only
in the same directory as the servlet that created the cookie, or it's returned under that directory. We can
get around this limitation using setPath(). Here's a cookie that is returned to all pages on all top-level

mywbut.com

26

servers at company.com:

String userid = createUserID(); // Create a unique ID
Cookie c = new Cookie("userid", userid);
c.setDomain(".company.com"); // *.company.com, but not *.web.company.com
c.setPath("/"); // All pages
resp.addCookie(c); // Add the cookie to the HTTP headers

3.11. Session Tracking

Very few web applications are confined to a single page, so having a mechanism for tracking users
through a site can often simplify application development. The Web, however, is an inherently stateless
environment. A client makes a request, the server fulfills it, and both promptly forget about each other.
In the past, applications that needed to deal with a user through multiple pages (for instance, a shopping
cart) had to resort to complicated dodges to hold onto state information, such as hidden fields in forms,
setting and reading cookies, or rewriting URLs to contain state information.

The Servlet API provides classes and methods specifically designed to handle session tracking . A
servlet can use the session-tracking API to delegate most of the user-tracking functions to the server.
The first time a user connects to a session-enabled servlet, the servlet simply creates a
javax.servlet.http.HttpSession object. The servlet can then bind data to this object, so subsequent
requests can read the data. After a certain amount of inactive time, the session object is destroyed.

A servlet uses the getSession() method of HttpServletRequest to retrieve the current session
object. This method takes a single boolean argument. If you pass TRue and there is no current session
object, the method creates and returns a new HttpSession object. If you pass false, the method returns
null if there is no current session object. For example:

HttpSession thisUser = req.getSession(true);

When a new HttpSession is created, the server assigns a unique session ID that must somehow be
associated with the client. Since clients differ in what they support, the server has a few options that vary
slightly depending on the server implementation. In general, the server's first choice is to try to set a
cookie on the client (which means that getSession() must be called before you write any other data
back to the client). If cookie support is lacking, the API allows servlets to rewrite internal links to
include the session ID, using the encodeURL() method of HttpServletResponse. This is optional, but
recommended, particularly if your servlets share a system with other, unknown servlets that may rely on
uninterrupted session tracking. However, this on-the-fly URL encoding can become a performance
bottleneck because the server needs to perform additional parsing on each incoming request to determine
the correct session key from the URL. (The performance hit is so significant that many servers disable
URL encoding by default.)

To use URL encoding, run all your internal links through encodeURL(). If you have a line of code like
this:

mywbut.com

27

out.println("Check Out");

you should replace it with:

out.print("<a href=\"");
out.print(resp.encodeURL("/servlet/CheckoutServlet");
out.println("\">Check Out");

When cookies can't be used, the server will encode the session ID into the path by
appending ;jsessionid= and the session ID, like this:[*]

[*] Earlier versions of the Servlet API left the session encoding algorithm up to the container
developer. Later releases standardized the system to prevent portability problems for
applications that also use path encoding.

Check Out"

In addition to encoding your internal links, you need to use encodeRedirectURL() to handle redirects

properly. This method works in the same manner as encodeURL().[]

[] These methods were introduced in Servlet API 2.1, replacing two earlier methods
named encodeUrl() and encodeRedirectUrl(). This was done to bring the
capitalization scheme in line with other Java APIs.

You can access the unique session ID via the getID() method of HttpSession. This is enough for
most applications, since a servlet can use some other storage mechanism (i.e., a flat file, memory, or a
database) to store the unique information (e.g., hit count or shopping cart contents) associated with each
session. However, the API makes it even easier to hold onto session-specific information by allowing
servlets to bind objects to a session using the setAttribute() method of HttpSession. Once an
object is bound to a session, you can use the getAttribute() method to retrieve it.

Objects bound using setAttribute() are available to all servlets running on the server. The system
works by assigning a user-defined name to each object (the String argument); this name is used to
identify objects at retrieval time. In order to avoid conflicts, the general practice is to name bound
objects with names of the form applicationname.objectname. For example:

session.setAttribute("myservlet.hitcount", new Integer(34));

Now that object can be retrieved with:

Integer hits = (Integer)session.getAttribute("myservlet.hitcount")

Example 3-7 demonstrates a basic session-tracking application that keeps track of the number of visits to

5/1/2010file://C:\Documents and Settings\Chandu\Local Settings\Temp\~hh6BD1.htm

mywbut.com

28

the site by a particular user. It works by storing a counter value in an HttpSession object and
incrementing it as necessary. When a new session is created (as indicated by isNew(), which returns
true if the session ID has not yet passed through the client and back to the server) or the counter object
is not found, a new counter object is created.

Example 3-7. Counting visits with sessions

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class VisitCounterServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 PrintWriter out = resp.getWriter();
 resp.setContentType("text/html");
 HttpSession thisUser = req.getSession(true);
 Integer visits;

 if(!thisUser.isNew()) { // Don't check newly created sessions
 visits = (Integer)thisUser.getAttribute("visitcounter.visits");
 if(visits == null)
 visits = new Integer(1);
 else
 visits = new Integer(visits.intValue() + 1);
 }
 else
 visits = new Integer(1);

 // Put the new count in the session
 thisUser.setAttribute("visitcounter.visits", visits);

 // Finally, display the results and give them the session ID too
 out.println("<html><head><title>Visit Counter</title></head>");
 out.println("<body>You have visited this page " + visits + " time[s]");
 out.println("since your last session expired.");
 out.println("Your Session ID is " + thisUser.getId());
 out.println("</body></html>");
 }
}

3.11.1. HttpSessionBindingListener

Sometimes it is useful to know when an object is being bound to or unbound from a session object. For
instance, in an application that binds a JDBC java.sql.Connection object to a session (something
that, by the way, is ill-advised in all but very low traffic sites), it is vitally important that the
Connection be explicitly closed when the session is destroyed.

The javax.servlet.http.HttpSessionBindingListener interface handles this task. It includes two
methods, valueBound() and valueUnbound(), that are called whenever the object that implements
the interface is bound or unbound from a session, respectively. Each of these methods receives an
HttpSessionBindingEvent object that provides the name of the object being bound or unbound and the
session involved in the action. The following is an object that implements the

mywbut.com

29

HttpSessionBindingListener interface in order to make sure that a database connection is closed
properly:

class ConnectionHolder implements HttpSessionBindingListener {

 java.sql.Connection dbCon;

 public ConnectionHolder(java.sql.Connection con) {
 dbCon = con;
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // Do nothing
 }

 public void valueUnbound(HttpSessionBindingEvent event) {
 dbCon.close();
 }
}

Programmers should also be aware of the HttpSessionListener interface, which responds to session
creation and destruction events.

3.12. Databases and Non-HTML Content

Most web applications need to communicate with a database, either to generate dynamic content or
collect and store data from users, or both. With servlets, this communication is easily handled using the
JDBC API described in Chapter 8. Thanks to JDBC and the generally sensible design of the servlet
lifecycle, servlets are an excellent intermediary between a database and web clients.

Most of the general JDBC principles discussed in Chapter 8 apply to servlets. In our example, we create
a database connection within the servlet's init() method. Larger applications will generally prefer to
use a database connection pool, managed by the servlet container. Connection pools and DataSource
objects (for container-managed database connections) are discussed in Chapter 8. Another option would
be to use the object relational capabilities provided by Hibernate in your servlet. Hibernate is discussed
in Chapter 20.

So far, all our servlets have produced standard HTML content. Of course, this is all most servlets ever
do, but it's not all that they can do. Say, for instance, that your company stores a large database of PDF
documents within an Oracle database, where they can be easily accessed. Now say you want to
distribute these documents on the Web. Luckily, servlets can dish out any form of content that can be
defined with a MIME header. All you have to do is set the appropriate content type and use a
ServletOuputStream if you need to transmit binary data. Example 3-8 shows how to pull Adobe
Acrobat documents from an Oracle database.

Example 3-8. A servlet that serves PDF files from a database

import java.io.*;

mywbut.com

30

import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DBPDFReader extends HttpServlet {

 Connection con;

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 con = DriverManager.getConnection("jdbc:oracle:thin:@DBHOST:1521:ORCL",
 "user", "passwd");
 }
 catch (ClassNotFoundException e) {
 throw new UnavailableException("Couldn't load OracleDriver");
 }
 catch (SQLException e) {
 throw new UnavailableException("Couldn't get db connection");
 }
 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 try {
 res.setContentType("application/pdf");
 ServletOutputStream out = res.getOutputStream();

 Statement stmt = con.createStatement();

 /* This is dangerous for production code. Request
 parameters should never be injected into SQL without
 preprocessing. We're keeping syntax simple for this
 example. */
 ResultSet rs = stmt.executeQuery(
 "SELECT PDF FROM PDF WHERE PDFID = " + req.getParameter("PDFID"));

 if (rs.next()) {
 BufferedInputStream pdfData =
 new BufferedInputStream(rs.getBinaryStream("PDF"));
 byte[] buf = new byte[4 * 1024]; // 4K buffer
 int len;
 while ((len = pdfData.read(buf, 0, buf.length)) != -1) {
 out.write(buf, 0, len);
 }
 }
 else {
 res.sendError(res.SC_NOT_FOUND);
 }
 rs.close();
 stmt.close ();
 }
 catch(SQLException e) {
 // Report it
 }
 }
}

mywbut.com

31

