

DFD Model of a System

mywbut.com

1

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Draw the context diagram of any given problem.
• Draw the DFD model of any given problem.
• Develop the data dictionary for any given problem.
• Identify the common errors that may occur while constructing the DFD

model of a system.
• Identify the shortcomings of a DFD model when used as a tool for

structured analysis.

Context diagram

The context diagram is the most abstract data flow representation of a system. It
represents the entire system as a single bubble. This bubble is labeled according
to the main function of the system. The various external entities with which the
system interacts and the data flow occurring between the system and the
external entities are also represented. The data input to the system and the data
output from the system are represented as incoming and outgoing arrows. These
data flow arrows should be annotated with the corresponding data names. The
name ‘context diagram’ is well justified because it represents the context in which
the system is to exist, i.e. the external entities who would interact with the system
and the specific data items they would be supplying the system and the data
items they would be receiving from the system. The context diagram is also
called as the level 0 DFD.

To develop the context diagram of the system, it is required to analyze the SRS
document to identify the different types of users who would be using the system
and the kinds of data they would be inputting to the system and the data they
would be receiving the system. Here, the term “users of the system” also
includes the external systems which supply data to or receive data from the
system.

The bubble in the context diagram is annotated with the name of the software
system being developed (usually a noun). This is in contrast with the bubbles in
all other levels which are annotated with verbs. This is expected since the
purpose of the context diagram is to capture the context of the system rather
than its functionality.

Example#1: RMS Calculating Software.

A software system called RMS calculating software would read three integral
numbers from the user in the range of -1000 and +1000 and then determine the
root mean square (rms) of the three input numbers and display it. In this

mywbut.com

2

example, the context diagram (fig. 5.4) is simple to draw. The system accepts
three integers from the user and returns the result to him.

User

 Fig. 5.4: Context Diagram

Example#2: Tic-Tac-Toe Computer Game

The problem is described in Lesson 5.1(Example 1). The level 0 DFD shown in
Figure 5.2(a) is the context diagram for this problem.

DFD model of a system

A DFD model of a system graphically depicts the transformation of the data input
to the system to the final result through a hierarchy of levels. A DFD starts with
the most abstract definition of the system (lowest level) and at each higher level
DFD, more details are successively introduced. To develop a higher-level DFD
model, processes are decomposed into their sub-processes and the data flow
among these sub-processes is identified.

To develop the data flow model of a system, first the most abstract
representation of the problem is to be worked out. The most abstract
representation of the problem is also called the context diagram. After,
developing the context diagram, the higher-level DFDs have to be developed.

Context Diagram:-
This has been described earlier.

Level 1 DFD:-
To develop the level 1 DFD, examine the high-level functional requirements. If
there are between 3 to 7 high-level functional requirements, then these can be
directly represented as bubbles in the level 1 DFD. We can then examine the

data-items rms

rms
calculator

0

mywbut.com

3

input data to these functions and the data output by these functions and
represent them appropriately in the diagram.

If a system has more than 7 high-level functional requirements, then some of the
related requirements have to be combined and represented in the form of a
bubble in the level 1 DFD. Such a bubble can be split in the lower DFD levels. If
a system has less than three high-level functional requirements, then some of
them need to be split into their sub-functions so that we have roughly about 5 to
7 bubbles on the diagram.

Decomposition:-
Each bubble in the DFD represents a function performed by the system. The
bubbles are decomposed into sub-functions at the successive levels of the DFD.
Decomposition of a bubble is also known as factoring or exploding a bubble.
Each bubble at any level of DFD is usually decomposed to anything between 3 to
7 bubbles. Too few bubbles at any level make that level superfluous. For
example, if a bubble is decomposed to just one bubble or two bubbles, then this
decomposition becomes redundant. Also, too many bubbles, i.e. more than 7
bubbles at any level of a DFD makes the DFD model hard to understand.
Decomposition of a bubble should be carried on until a level is reached at which
the function of the bubble can be described using a simple algorithm.

Numbering of Bubbles:-
It is necessary to number the different bubbles occurring in the DFD. These
numbers help in uniquely identifying any bubble in the DFD by its bubble number.
The bubble at the context level is usually assigned the number 0 to indicate that
it is the 0 level DFD. Bubbles at level 1 are numbered, 0.1, 0.2, 0.3, etc, etc.
When a bubble numbered x is decomposed, its children bubble are numbered
x.1, x.2, x.3, etc. In this numbering scheme, by looking at the number of a bubble
we can unambiguously determine its level, its ancestors, and its successors.

Example:-

A supermarket needs to develop the following software to encourage regular
customers. For this, the customer needs to supply his/her residence address,
telephone number, and the driving license number. Each customer who registers
for this scheme is assigned a unique customer number (CN) by the computer. A
customer can present his CN to the check out staff when he makes any
purchase. In this case, the value of his purchase is credited against his CN. At
the end of each year, the supermarket intends to award surprise gifts to 10
customers who make the highest total purchase over the year. Also, it intends to
award a 22 caret gold coin to every customer whose purchase exceeded
Rs.10,000. The entries against the CN are the reset on the day of every year
after the prize winners’ lists are generated.

mywbut.com

4

The context diagram for this problem is shown in fig. 5.5, the level 1 DFD in fig.
5.6, and the level 2 DFD in fig. 5.7.

Fig. 5.5: Context diagram for supermarket problem

mywbut.com

5

Fig. 5.6: Level 1 diagram for supermarket problem

Fig. 5.7: Level 2 diagram for supermarket problem

mywbut.com

6

Data dictionary for a DFD model

Every DFD model of a system must be accompanied by a data dictionary. A data
dictionary lists all data items appearing in the DFD model of a system. The data
items listed include all data flows and the contents of all data stores appearing on
the DFDs in the DFD model of a system. We can understand the creation of a
data dictionary better by considering an example.

Example: Trading-House Automation System (TAS).

The trading house wants us to develop a computerized system that would
automate various book-keeping activities associated with its business. The
following are the salient features of the system to be developed:

• The trading house has a set of regular customers. The customers
place orders with it for various kinds of commodities. The trading
house maintains the names and addresses of its regular customers.
Each of these regular customers should be assigned a unique
customer identification number (CIN) by the computer. The customers
quote their CIN on every order they place.

• Once order is placed, as per current practice, the accounts department
of the trading house first checks the credit-worthiness of the customer.
The credit-worthiness of the customer is determined by analyzing the
history of his payments to different bills sent to him in the past. After
automation, this task has to be done by the computer.

• If the customer is not credit-worthy, his orders are not processed any
further and an appropriate order rejection message is generated for the
customer.

• If a customer is credit-worthy, the items that have been ordered are
checked against a list of items that the trading house deals with. The
items in the order which the trading house does not deal with, are not
processed any further and an appropriate apology message for the
customer for these items is generated.

• The items in the customer’s order that the trading house deals with are
checked for availability in the inventory. If the items are available in the
inventory in the desired quantity, then

o A bill with the forwarding address of the customer is printed.
o A material issue slip is printed. The customer can produce this

material issue slip at the store house and take delivery of the
items.

o Inventory data is adjusted to reflect the sale to the customer.

mywbut.com

7

• If any of the ordered items are not available in the inventory in
sufficient quantity to satisfy the order, then these out-of-stock items
along with the quantity ordered by the customer and the CIN are stored
in a “pending-order” file for the further processing to be carried out
when the purchase department issues the “generate indent” command.

• The purchase department should be allowed to periodically issue
commands to generate indents. When a command to generate indents
is issued, the system should examine the “pending-order” file to
determine the orders that are pending and determine the total quantity
required for each of the items. It should find out the addresses of the
vendors who supply these items by examining a file containing vendor
details and then should print out indents to these vendors.

• The system should also answer managerial queries regarding the
statistics of different items sold over any given period of time and the
corresponding quantity sold and the price realized.

The context diagram for the trading house automation problem is shown in fig.
5.8, and the level 1 DFD in fig. 5.9.

Fig. 5.8: Context diagram for TAS

mywbut.com

8

Fig. 5.9: Level 1 DFD for TAS

Data Dictionary for the DFD Model of TAS:

response: [bill + material-issue-slip, reject-message]
query: period /*query from manager regarding sales statistics */
period: [date + date, month, year, day]
date: year + month + day
year: integer
month: integer
day: integer
order: customer-id + {items + quantity}* + order#
accepted-order: order /* ordered items available in inventory */
reject-message: order + message /*rejection message*/
pending-orders: customer-id + {items + quantity}*

mywbut.com

9

customer-address: name + house# + street# + city + pin
name: string
house#: string
street#: string
city: string
pin: integer
customer-id: integer
customer-file: {customer-address}*
bill: {item + quantity + price}* + total-amount + customer-address +

order#
material-issue-slip: message + item + quantity + customer-address
message: string
statistics: {item + quantity + price}*
sales-statistics: {statistics}* + date
quantity: integer
order#: integer /* unique order number generated by the program */
price: integer
total-amount: integer
generate-indent: command
indent: {indent + quantity}* + vendor-address
indents: {indent}*
vendor-address: customer-address
vendor-list: {vendor-address}*
item-file: {item}*
item: string
indent-request: command

Commonly made errors while constructing a DFD model

Although DFDs are simple to understand and draw, students and practitioners
alike encounter similar types of problems while modelling software problems
using DFDs. While learning from experience is powerful thing, it is an expensive
pedagogical technique in the business world. It is therefore helpful to understand
the different types of mistakes that users usually make while constructing the
DFD model of systems.

mywbut.com

10

• Many beginners commit the mistake of drawing more than one bubble

in the context diagram. A context diagram should depict the system as
a single bubble.

• Many beginners have external entities appearing at all levels of DFDs.
All external entities interacting with the system should be represented
only in the context diagram. The external entities should not appear at
other levels of the DFD.

• It is a common oversight to have either too less or too many bubbles in
a DFD. Only 3 to 7 bubbles per diagram should be allowed, i.e. each
bubble should be decomposed to between 3 and 7 bubbles.

• Many beginners leave different levels of DFD unbalanced.
• A common mistake committed by many beginners while

developing a DFD model is attempting to represent control information
in a DFD. It is important to realize that a DFD is the data flow
representation of a system, and it does not represent control
information. For an example mistake of this kind:

o Consider the following example. A book can be searched in the

library catalog by inputting its name. If the book is available in
the library, then the details of the book are displayed. If the book
is not listed in the catalog, then an error message is generated.
While generating the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in
fig. 5.10) to indicate the error function is invoked after the
search book. But, this is a control information and should not be
shown on the DFD.

Fig. 5.10: Showing control information on a DFD - incorrect

o Another error is trying to represent when or in what order
different functions (processes) are invoked and not representing
the conditions under which different functions are invoked.

o If a bubble A invokes either the bubble B or the bubble C

depending upon some conditions, we need only to represent the

mywbut.com

11

data that flows between bubbles A and B or bubbles A and C
and not the conditions depending on which the two modules are
invoked.

• A data store should be connected only to bubbles through data arrows.
A data store cannot be connected to another data store or to an
external entity.

• All the functionalities of the system must be captured by the DFD
model. No function of the system specified in its SRS document should
be overlooked.

• Only those functions of the system specified in the SRS document
should be represented, i.e. the designer should not assume
functionality of the system not specified by the SRS document and
then try to represent them in the DFD.

• Improper or unsatisfactory data dictionary.
• The data and function names must be intuitive. Some students and

even practicing engineers use symbolic data names such a, b, c, etc.
Such names hinder understanding the DFD model.

Shortcomings of a DFD model

DFD models suffer from several shortcomings. The important shortcomings of
the DFD models are the following:

• DFDs leave ample scope to be imprecise. In the DFD model, the

function performed by a bubble is judged from its label. However, a
short label may not capture the entire functionality of a bubble. For
example, a bubble named find-book-position has only intuitive meaning
and does not specify several things, e.g. what happens when some
input information are missing or are incorrect. Further, the find-book-
position bubble may not convey anything regarding what happens
when the required book is missing.

• Control aspects are not defined by a DFD. For instance, the order in
which inputs are consumed and outputs are produced by a bubble is
not specified. A DFD model does not specify the order in which the
different bubbles are executed. Representation of such aspects is very
important for modeling real-time systems.

• The method of carrying out decomposition to arrive at the successive
levels and the ultimate level to which decomposition is carried out are
highly subjective and depend on the choice and judgment of the
analyst. Due to this reason, even for the same problem, several
alternative DFD representations are possible. Further, many times it is
not possible to say which DFD representation is superior or preferable
to another one.

mywbut.com

12

• The data flow diagramming technique does not provide any specific
guidance as to how exactly to decompose a given function into its sub-
functions and we have to use subjective judgment to carry out
decomposition.

mywbut.com

13

