Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Semester-V

Name of the course		ELECTRIC MACHINE-II			
Course Code: PC-EE-501		Semester: 5th			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs/week		Mid Semester Exam: 15 Marks			
Tutorial: 0hr/week		Assignment & Quiz: 10 Marks			
Practi	cal: hrs/week A	Attendance: 05 Marks			
Credit Points: 3 End Semester Exam		and Semester Exam: 7	70 Marks		
Obje	ctive:				
1.	To understand the arrangement of windings of AC machines.				
2.	To understand the principle of production of puls	oulsating and revolving magnetic fields.			
3.	To understand the principle of operation and ch	characteristics of three phase Induction machines			
4.	To understand the principle of operation and cha	tion and characteristics of single phase Induction machines			
5.	To understand the principle of operation and cha	e principle of operation and characteristics of synchronous machine			
6.	To understand the principle of operation and characteristics of special electromechanical devices.				
7.	To solve problems of Induction machines, synch	s of Induction machines, synchronous machines and special eletromechanical			
	devices.		1		
Pre-R	Pre-Requisite				
1.	Basic Electrical Engineering (ES-EE-101)	Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)				
3.	Electromagnetic field theory (PC-EE-303)	ory (PC-EE-303)			
4.	Electric Machine-I (PC-EE-401)				
Unit	Content	Hrs Marks			
1	Fundamentals of AC machine windings:			11202220	
-	Physical arrangement of windings in stator ar	nd cylindrical rotor:			
	slots for windings: single-turn coil - active po	ortion and overhang:			
	full-pitch coils, concentrated winding, distribute	ch coils, concentrated winding, distributed winding, winding			
	axis,3D visualization of the above winding ty	vpes, Air-gap MMF	5		
	distribution with fixed current through				
	winding-concentrated and distributed, Sinus	soidally distributed			
	winding, winding distribution factor	5			
2	Pulsating and revolving magnetic fields:				
	Constant magnetic field, pulsating magnetic	field - alternating			
	current in windings with spatial displacement	ent, Magnetic field			
	produced by a single winding - fixed current an	d alternating current			
	Pulsating fields produced by spatially displaced	windings, Windings	5		
	spatially shifted by 90 degrees, Addition of	pulsating magnetic			
	fields, Three windings spatially shifted by 12	0 degrees (carrying			
	three-phase balanced currents), revolving magne	etic field.			
3	Induction Machines:				
	Construction, Types (squirrel cage and slip-	-ring), Torque Slip			
	Characteristics, Starting and Maximum Torque	e. Equivalent circuit.	10		
	Phasor Diagram, Losses and Efficiency. E	effect of parameter			
	variation on torque speed characteristics (var	riation of rotor and			
	stator resistances, stator voltage, frequency). M	Methods of starting,			
	braking and speed control for induction motors.	Generator operation.			
	Self-excitation. Doubly-Fed Induction Machines	•			

4	Constructional features, double revolving field theory, equivalent circuit, determination of parameters. Split-phase starting methods and applications	5	
5	Synchronous machines: Constructional features, cylindrical rotor synchronous machine - generated EMF, equivalent circuit and phasor diagram, armature reaction, synchronous impedance, voltage regulation. Operating characteristics of synchronous machines, V-curves. Salient pole machine - two reaction theory, analysis of phasor diagram, power angle characteristics. Parallel operation of alternators -	10	
6	Special Electromechanical devices:		
	Principle and construction of switched Reluctance motor, Permanent magnet machines, Brushless DC machines, Hysteresis motor, Stepper motor, Tacho generators.	5	

Text books:

- 1. Electrical Machinery, P.S. Bhimra, Khanna Publishers.
- 2. Electrical Machines, Nagrath & Kothary, TMH
- 3. Electrical Machines, P.K. Mukherjee and S. Chakravorti, Dhanpat Rai Publications.
- 4. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference books

- 1. Electric Machinery & Transformer, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electric Machinery & Transformes, Irving L. Kosow, PHI
- 3. Electric Machinery, A.E.Fitzgerald, Charles Kingsley, Jr. & Stephen D. Umans, 6th Edition, Tata McGraw Hill Edition.
- 4. Electrical Machines, R.K. Srivastava, Cengage Learning
- 5. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 6. The performance and Design of Alternating Current Machines, M.G.Say, CBS publishers & distributors
- 7. Electric Machines, Charles A. Gross, CRC press.
- 8. Problems in Electrical Engineering, Parker smith, 9th Edition, CBS publishers & distributors.

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the arrangement of winding of AC machines.
- 2. explain the principle of operation of Induction machines, Synchronous machines and special machines.
- 3. solve numerical problems of Induction machines, Synchronous machines and Special machines.
- 4. estimate the parameters and efficiency of Induction machines and Synchronous machines.
- 5. determine the characteristics of Induction machines and Synchronous machines.
- 6. select appropriate methods for starting, braking and speed control of Induction machines.

Special Remarks (if any)

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.