Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

Name of the course		ANALOG ELECTRONICS			
Course Code: PC-EE 302		Semester: 3rd			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs/week		Mid Semester Exam:	15 Marks		
Tutorial: 0 hr/week		Assignment & Quiz:	10 Marks		
Practical: 2 hrs/week		Attendance:	05 Marks		
Credit Points: 3+1		End Semester Exam: 70 Marks			
Objective:					
1.	To understand the structure and properties of different components of Analog				
	Electronics.	-	-		
2.	To learn different techniques to analyze	Analog electronics circ	cuit.		
3.	To learn application of different component	nts of Analog electroni	ics.		
4.	To understand principle and operation of different Analog electronic circuits.				
5.	To acquire problem solving skills of electronic circuit.				
Pre-H	Requisite				
1.	Physics (10+2)				
Unit	Content		Hrs	Marks	
1	Filters & Regulators: Capacitor filters, π	t-section filter, ripple	4		
	factor, series and shunt voltage re	gulator, percentage			
	regulation, Concept of SMPS.				
2	Transistor biasing & stability: Q p	oint, Self Bias-CE,	6		
	compensation techniques, h-model of Trar	nsistor, Expression of			
	voltage gain, current gain, input & outpu	it impedance, Trans-			
	resistance & Trans-conductance, Emitte	er follower circuits,			
	High frequency model of Transistor.				
3	Transistor amplifier: RC coupled ampl	ifier, Function of all	6		
	components, Equivalent circuit, derivati	on of voltage gain,			
	Current gain, Input impedance &	output impedance,			
	Frequency response characteristics, Lo	ower & upper half			
	frequencies, Bandwidth, Concept of Wide	band amplifier.			
4	Feed back amplifier & Oscillators: Co	oncept of Feed back,	5		
	Negative & Positive feedback, Voltage/C	Current, Series/Shunt			
	feedback, Berkhausen criterion, Colpit, F	Hartley's, Phase shift,			
	Wien bridge, & Crystal oscillators.				
5	Operational amplifier: Ideal OPAMP, D	Differential amplifier,	6		
	Constant current source (Current mirror	etc), Level shifter,			
	CMRR, Open & closed loop circuits, imp	portance of feedback			
	loop (positive & negative), inverting	g & non-inverting			
	amplifiers, Voltage follower/Buffer circuit	ts.			
6	Application of Operational amplifiers:	Adder, Integrator &	5		

	Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Log & Antilog amplifier, Trans-conductance multiplier, Precision rectifier, Voltage to current &Current to voltage converter.		
7	Power amplifier: Class A, B, AB, C, Conversion efficiency, Tuned amplifier.	4	
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2	
9	Special function circuits: VCO & PLL	2	