Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Mechanical Engineering

(Applicable from the academic session 2018-2019)

Subject Code : PC-ME301	Category: Professional Core courses
Subject Name : Thermodynamics	Semester : Third
L-T-P : 3-1-0	Credit:4
Pre-Requisites: No-prerequisite	

Course Objective:

- 1. To learn about work and heat interactions, and balance of energy between system and its surroundings
- 2. To learn about application of I law to various energy conversion devices
- 3. To evaluate the changes in properties of substances in various processes
- 4. To understand the difference between high grade and low grade energies and II law limitations on energy conversion.

Course Content:

Module No.	Description of Topic	Contact Hrs.
1	Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work-Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; electrical, magnetic, gravitational, spring and shaft work.	5
2	Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E ; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy.	5
3	Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart.	8
4	First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume.	5
5	Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale.	5
6	Clausius inequality; Definition of entropy S; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in Ts coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for	8

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Mechanical Engineering

(Applicable from the academic session 2018-2019)

	(ph			
ſ	systems and Control volumes undergoing			
		different processes, Lost work. Second law analysis for a control volume.		
		Exergy balance equation and Exergy analysis.		
	7	Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic	4	
		vapor compression cycle and comparison with Carnot cycle.		

Course Outcomes:

- 1. After completing this course, the students will be able to apply energy balance to systems and control volumes, in situations involving heat and work interactions
- 2. Students can evaluate changes in thermodynamic properties of substances
- 3. The students will be able to evaluate the performance of energy conversion devices
- 4. The students will be able to differentiate between high grade and low grade energies.

Learning Resources:

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, *Fundamentals of Thermodynamics*, John Wiley and Sons.
- 2. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 3. Moran, M. J. and Shapiro, H. N., 1999, *Fundamentals of Engineering Thermodynamics*, John Wiley and Sons.
- 4. Nag, P.K, 1995, *Engineering Thermodynamics*, Tata McGraw-Hill Publishing Co. Ltd.