Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) SYLLABUS FOR BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (Effective from academic session 2018-19)

Subject Code : PC-ME 503	Category: Professional Core Courses	
Subject Name : Kinematics and Theory of Machines	Semester : Fifth	
L-T-P : 3-1-0	Credit: 4	
Pre-Requisites: Engineering Mechanics		

Course Objectives:

- 1. To understand the kinematics and rigid- body dynamics of kinematically driven machine components
- 2. To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link
- 3. To be able to design some linkage mechanisms and cam systems to generate specified output motion
- 4. To understand the kinematics of gear trains

Course Contents:

Module No.	Description of Topic	Contact Hrs.
1	Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider crank chains. Limit positions- Mechanical advantage- Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms.	6
2	Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Corioli's component of acceleration- introduction to linkage synthesis- three position graphical synthesis for motion and path generation.	7
3	Classification of cams and followers- Terminology and definitions- Displacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers.	5
4	Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion	6

	gears, epicyclic and regular gear train kinematics.	
5	Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication, Friction clutches- Belt and Rope drives- Friction in brakes.	6
6	Vibrations– Free and forced vibration of undamped and damped Single DOF systems, Resonance, Transmissibility Ratio, Effect of damping, Vibration Isolation, Critical Speed of Shafts.	6
7	Balancing of Reciprocating and Rotating Masses- Static balancing, Unbalance of force or moment, Dynamic balancing of rotating masses- graphical and analytical methods; Swaying couple; Hammer blow.	4
8	Governors- Use and classification; Study and analysis of Porter, Proell and Wilson-Hartnell governors; Sensitiveness, stability, isochronism, hunting, effort and power of governors.	3
9	Flywheel- Inertia force and inertia torque in reciprocating engine, correction couple (torque), Turning moment diagram and flywheel design.	3
10	Gyroscope- Gyroscopic couple and precessional motion, Effect of gyroscopic couple on aeroplane and ship, Stability of two wheel and four wheel vehicles taking turn.	2

Course Outcomes:

After completing this course, the students can design various types of linkage mechanisms for obtaining specific motion and analyze them for optimal functioning

Learning Resources:

- 1. T. Bevan, Theory of Machines, 3rd Edition, CBS Publishers & Distributors, 2005.
- 2. A. Shariff, Theory of Machines, Dhanpat Rai Publication, New Delhi, 2000.
- 3. W.L. Cleghorn, Mechanisms of Machines, Oxford University Press, 2005.
- 4. R.L. Norton, Kinematics and Dynamics of Machinery, 1st Edition, McGraw Hill India, 2010.
- 5. A. Ghosh and A.K. Mallick, Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd., New Delhi, 1988.