Circuit Theory \& Network
 Code: IT504A
 Contact: 3L + 1T
 Credits: 4

Module 1
a) Resonant Circuits: Series and Parallel resonance [1L], (*) Impedance and Admittance Characteristics, Quality Factor, Half Power Points, Bandwidth [2L], Phasor diagrams, Transform diagrams [1L],

Practical resonant and series circuits, Solution of Problems [Tutorial-1L].
b) Mesh Current Network Analysis: Kirchoff's Voltage law, Formulation of mesh equations [1L], Solution of mesh equations by Cramer's rule and matrix method [2L], Driving point impedance, Transfer impedance [1L], Solution of problems with DC and AC sources [1L].

Module 2

a) Node Voltage Network Analysis: Kirchoff's Current law, Formulation of Node equations and solutions [2L], driving point admittance, transfer Admittance [1L], Solution of problems with DC and AC sources [1L].
b) Network Theorems: Definition and Implication of Superposition Theorem [1L], Thevenin's theorem, Norton's theorem [1L], Reciprocity theorem, Compensation theorem [1L], maximum Power Transfer theorem [1L], Millman's theorem, Star delta transformations [1L], Solutions and problems with DC and AC sources [1L].

Module 3
Graph of Network: Concept of Tree and Branch [1L], tree link, junctions, (*) Incident matrix, Tie set matrix [2L], Determination of loop current and node voltages [2L].

Coupled Circuits: Magnetic coupling, polarity of coils, polarity of induced voltage, concept of Self and mutual inductance, Coefficient of coupling, Solution of Problems.

Circuit transients: DC transients in R-L and R-C Circuits with and without initial charge, (*) R-L-C Circuits, AC Transients in sinusoidal R-L, R-C and R-L-C Circuits, Solution of Problems [2L].

Module 4
Laplace transform: Concept of Complex frequency [1L], transform of $f(t)$ into $F(s)$ [1L], transform of step, exponential, over damped surge, critically damped surge, damped and un-damped sine functions [2L], properties of Laplace transform [1L], linearity, real differentiation, real integration, initial value theorem and final value theorem [1L], inverse Laplace transform [1L], application in circuit analysis, Partial fraction expansion, Heaviside's expansion theorem, Solution of problems [1L].
(*) Laplace transform and Inverse Laplace transform [2L].

Two Port Networks: Relationship of Two port network variables, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, relationship between parameter sets, network functions for ladder network and general network.

Tutorials: (*):Bold and Italics.
Old module 9 viz. SPICE deleted for consideration in Sessional Subject.
mywbut.com

Problems for Module 1a:

Ex. 1. A parallel RLC Circuit has R=100 K Ohms, $\mathrm{L}=10 \mathrm{mH}, \mathrm{C}=10 \mathrm{nF}$. Find resonant frequency, bandwidth and Quality factor.
Ex. 2. Two coils one of $\mathrm{R}=0.51$ Ohms, $\mathrm{L}=32 \mathrm{mH}$, other of $\mathrm{R}=1.3 \mathrm{Ohms}, \mathrm{L}=15 \mathrm{mH}$, and two capacitors of 25 micro F and 62 micro F are in series with a resistance of 0.24 Ohms. Determine resonance frequency and Q of each coil.
Ex. 3. In a series circuit with $\mathrm{R}=50 \mathrm{Ohms}, \mathrm{I}=0.05 \mathrm{Ohms}$ and $\mathrm{C}=20$ micro F , frequency of the source is varied till the voltage across the capacitor is maximum. If the applied voltage is 100 V , find the maximum voltage across the capacitor and the frequency at which this occurs. Repeat the problem with $\mathrm{R}=10$ Ohms.

Problems for Module 1b and 2:

Examples for mesh current in networks like T, π, bridged T and combination of T and π.

Problems for Module- 2a:

Ex.1. The network of Fig. 1 - Mod. 4 is in the zero state until $\mathrm{t}=0$ when switch is closed. Find the current $\mathrm{i} 1(\mathrm{t})$ in the resistor R3. Hints: the Fig. 1 - Mod. 4 shows the same network in terms of transform impedance with the Thevenin equivalent network.

Ex.2. Find the Norton's equivalent circuit for the circuit Fig. 2 - Mod.4.
Hints: As a 1 st. step, short the terminals ab. This results in the Circuit of Fig.2.(a). By applying KCL at node a, we have, $(0-24) / 4+$ isc $=0$; i.e isc= 9 A . To find out the equivalent Norton's impedance RN, deactivate all the independent sources, resulting in a circuit of Fig.2.(b), $\mathrm{RN}=(4 \times 12) /(4+12)=3$ Ohms. Thus we obtain Norton equivalent circuit of Fig. 2 (c).

Problems for Module -2b:

Ex.1. Draw the graph, one tree and its co tree for the circuit shown in Fig. 1 - mod.5.
Hints: In the circuit there are four nodes $(N=4)$ and seven branches $(B=7)$. The graph is so drawn and appears as in Fig. 1 (a).
Fig.1(b) shows one tree of graph shown in Fig. 1(a). The tree is made up of branches 2,5 and 6 . The co tree for the tree of Fig. 1 (b) is shown in Fig. 1 (c). The co tree has $\mathrm{L}=\mathrm{B}-\mathrm{N}+1=7-4+1=4$ Links.

Ex.2. (a). For the circuit shown in Fig.2- Mod.5, construct a tree so that i1 is a link current. Assign a complete set of link currents and find i1 (t).
(b). Construct another tree in which v1 is a tree branch voltage. Assign a complete set of tree branch voltages and v 1 (t).
Take $i(t)=25 \sin 1000 t \mathrm{~A}, \mathrm{v}(\mathrm{t})=15 \cos 1000 \mathrm{t}$.

Armexure-1.

Fig. 1- $\operatorname{Mod}-4$.

Fig. 2-Mod. 4 .

Fog. 2.6.
Fig. $2 a$.

Figla (Amph) Fig. 1 b (tree) Fig. 1 C (co-tred).
Fig.I-Mort-S.

Fis.2-Mod-S.

