

3. Inheritance and Method Overriding

Introduction

This chapter will discuss the essential concepts of Inheritance, method overriding and the appropriate
use of ‘Super’.

Objectives

By the end of this chapter you will be able to….

Appreciate the importance of an Inheritance hierarchy,
Understand how to use Abstract classes to factor out common characteristics
Override methods (including those in the ‘Object’ class),
Explain how to use ‘Super’ to invoke methods that are in the process of being overridden,
Document an inheritance hierarchy using UML and
Implement inheritance and method overriding in Java programs.

All of the material covered in this chapter will be developed and expanded on in later chapters of this
book. While this chapter will focus on understanding the application and documentation of an
inheritance hierarchy, Chapter 6 will focus on developing the analytical skills required to define your
own inheritance hierarchies.

mywbut.com

1

http://bookboon.com/count/advert/4ba133ea-6153-46a2-ad8f-9fef00f222a0

This chapter consists of twelve sections :-

1) Object Families
2) Generalisation and Specialisation
3) Inheritance
4) Implementing Inheritance in Java
5) Constructors
6) Constructor Rules
7) Access Control
8) Abstract Classes
9) Overriding Methods
10) The ‘Object’ Class
11) Overriding toString() defined in ‘Object’
12) Summary

3.1 Object Families

Many kinds of things in the world fall into related groups of ‘families’. ‘Inheritance’ is the idea
‘passing down’ characteristics from parent to child, and plays an important part in Object Oriented
design and programming.

While you are probably already familiar with constructors and access control (public/private), and
there are particular issues in relating these to inheritance.

Additionally we need to consider the use of Abstract classes and method overriding as these are
important concepts in the context of inheritance.

Finally we will look at the ‘Object’ class which has a special role in relation to all other classes in Java.

3.2 Generalisation and Specialisation

Classes are a generalized form from which objects with differing details can be created. Objects are
thus ‘instances’ of their class. For example Student 051234567 is an instance of class Student. More
concisely, 051234567 is a Student.

Classes themselves can often be organised by a similar kind of relationship.

One hierarchy, that we all have some familiarity with, is that which describes the animal kingdom :-

Kingdom (e.g. animals)
Phylum (e.g. vertebrates)
Class (e.g. mammal)
Order (e.g. carnivore)
Family (e.g. cat)

mywbut.com

2

Genus (e.g. felix)
Species (e.g. felix leo)

We can represent this hierarchy graphically ….

Of course to draw the complete diagram would take more time and space than we have available.

Here we can see one specific animal shown here :-‘Fred’. Fred is not a class of animal but an
actual animal.

Fred is a felix leo is a felix is a cat is a carnivore

Carnivores eat meat so Fred has the characteristic ‘eats meat’.

Fred is a felix leo is a felix is a cat is a carnivore is a mammal is a vertebrate

Vertebrates have a backbone so Fred has the characteristic ‘has a backbone’.

The ‘is a’ relationship links an individual to a hierarchy of characteristics. This sort of relationship
applies to many real world entities, e.g. BonusSuperSaver is a SavingsAccount is a BankAccount.

Organism

Animal

Vertebrate

Mammal

Carnivore

Cat

Felix

Felix Leo

Fred

mywbut.com

3

3.3 Inheritance

We specify the general characteristics high up in the hierarchy and more specific characteristics lower
down. An important principle in OO – we call this generalization and specialization.

All the characteristics from classes above a class/object in the hierarchy are automatically featured in
it – we call this inheritance.

Consider books and magazines - both specific types of publication.

We can show classes to represent these on a UML class diagram. In doing so we can see some of the
instance variables and methods these classes may have.

Attributes ‘title’, ‘author’ and ‘price’ are obvious. Less obvious is ‘copies’ this is how many are
currently in stock.

For books, orderCopies() takes a parameter specifying how many copies are added to stock.

For magazines, orderQty is the number of copies received of each new issue and currIssue is the
date/period of the current issue (e.g. “January 2009”, “Fri 6 Jan”, “Spring 2009” etc.) When a
newIssue is received the old are discarded and orderQty copies are placed in stock. Therefore
recvNewIssue() sets currIssue to date of new issue and restores copies to orderQty. adjustQty()
modifies orderQty to alter how many copies of subsequent issues will be stocked.

Activity 1

Look at the ‘Book’ and ‘Magazine’ classes defined above and identify the commonalities
and differences between two classes.

Book

title
author
price
copies

sellCopy()
orderCopies()

sellCopy()
adjustQty()
recvNewIssue()

Magazine

title
price
orderQty
currIssue
copies

mywbut.com

4

We can separate out (‘factor out’) these common members of the classes into a superclass
called Publication.

Publication

title
price
copies

sellCopy()

Feedback 1

These classes have three instance variables in common: title, price, copies.
They also have in common the method sellCopy().

The differences are as follows…

Book additionally has author, and orderCopies().
Magazine additionally has orderQty, currIssue, adjustQty() and recvNewIssue().

mywbut.com

5

http://bookboon.com/count/advert/6d5a1393-8ea8-4721-88d7-a02100eae314

The differences will need to be specified as additional members for the ‘subclasses’ Book
and Magazine.

In this is a UML Class Diagram.

The hollow-centred arrow denotes inheritance.

Note the Subclass has the generalized superclass characteristics + additional specialized characteristics.
Thus the Book class has four instance variables (title, price, copies and author) it also has two methods
(sellCopy() and orderCopies()).

The inherited characteristics are NOT listed in subclasses. The arrow shows they are acquired
from superclass.

Activity 2

Arrange the following classes into a suitable hierarchy and draw these on a class
diagram…

a current account
a deposit account
a bank account
Simon’s deposit account

Book

author

orderCopies()

Magazine

orderQty
currIssue

adjustQty()
recvNewIssue()

Publication

title
price
copies

sellCopy()

mywbut.com

6

Feedback 2

Current Account

Bank Account

Deposit Account

The most general class goes at the top of the inheritance hierarchy with the other
classes then inheriting the attributes and methods of this class.

Simon’s deposit account should not be shown on a class diagram as this is a specific
instance of a class i.e. it is an object.

mywbut.com

7

http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Activity 3

Arrange the following classes into a suitable hierarchy and draw these on a class
diagram…

a building
a house
a car

Activity 4

Describe the following using a suitable class diagram showing ANY sensible
relationship…

a building for rent
this will have a method to determine the rent
a house for rent
this will inherit the determine rent method
a rent collector (person)
this person will use the determine rent method to print out a bill

HINT: You may wish to use the following arrow

Feedback 3

House

Building

Car

A house is a type of building and can therefore inherit the attributes of building however
this is not true of a car. We cannot place two classes in an inheritance hierarchy unless
we can use the term is a.

Note class names, as always, begin in uppercase.

mywbut.com

8

Feedback 5

Firstly to print out a bill a RentCollector would need to know the rent due. There is no
method determineRent() defined for a house – but this does not mean it does not exist.

It must exist as House inherits the properties of Building!

We only show methods in subclasses if they are either additional methods or methods
that have been overridden.

A rent collector requires a building but a House is a type of a Building. So, while no
association is shown between the RentCollector and House, a Rentcollector could print
a bill for a house. Wherever a Building object is required we could substitute a House
object as this is a type of Building. This is an example of polymorphism and we will see
other examples of this in Chapter 4.

Activity 5

Looking at the feedback from Activity 4 and determine if a RentCollector can print out a
bill for the rent due on a house (or can they just print a bill for buildings?).

Feedback 4

House

Building

RentCollector
determineRent()

printBill()

Note: RentCollector does not inherit from Building as a RentCollector is a person not a
type of Building. However there is a relationship (an association) between RentCollector
and Building ie. a RentCollector needs to determine the rent for a Building in order to
print out the bill.

mywbut.com

9

3.4 Implementing Inheritance in Java
No special features are required to create a superclass. Thus any class can be a superclass unless
specifically prevented.

A subclass specifies it is inheriting features from a superclass using the keyword extends. For
example….

Feedback 6

House

Building

RentCollector
determineRent()

printBill()

determineRent()

By showing determineRent() in House we are showing that this method is overriding the
one defined in the superclass (Building).

Interestingly Java will use the most correct determineRent() method depending upon
which type of object the method is invoked on. Thus RentCollector will invoke the
method defined in House if printing a bill for a house but will use the method defined in
Building for any other type of building. This is automatic – the code in the RentCollector
class does not distinguish between different types of Building.

Overriding will be discussed in more detail later in this chapter.

Activity 6

Modify this UML diagram to show that determineRent() is overridden in House.

House

Building

RentCollector
determineRent()

printBill()

mywbut.com

10

class MySubclass extends MySuperclass
{
 // additional instance variables and
 // additional methods
}

3.5 Constructors

Each class (whether sub or super) should encapsulate its own initialization, usually relating to setting
the initial state of its instance variables.

A constructor for a superclass should deal with general initialization.

Each subclass can have its own constructor for specialised initialization but it must often invoke the
behaviour of the superclass constructor. It does this using the keyword super.

class MySubClass extends MySuperClass
{
 public MySubClass (sub-parameters)
 {
 super(super-parameters);
 // other initialization
 }

If super is called, ie. the superclass constructor, then this must be the first statement in the constructor.

Usually some of the parameters passed to MySubClass will be initializer values for superclass instance
variables, and these will simply be passed on to the superclass constructor as parameters. In other
words super-parameters will be some (or all) of sub-parameters.

Shown below are two constructors, one for the Publication class and one for Book. The book
constructor requires four parameters three of which are immediately passed on to the superclass
constructor to initialize its instance variables.

public Publication (String pTitle, double pPrice, int pCopies)
{
 title = pTitle;
 // etc.
}

mywbut.com

11

public Book (String pTitle, String pAuthor, double pPrice,
 int pCopies)
{
 super(pTitle, pPrice, pCopies);
 author = pAuthor;
 //etc.
}

3.6 Constructor Rules

Rules exist that govern the invocation of a superconstructor.

If the superclass has a parameterless (or default) constructor this will be called automatically if no
explicit call to super is made in the subclass constructor though an explicit call is still better style for
reasons of clarity.

However if the superclass has no parameterless constructor but does have a parameterized one, this
must be called explicitly using super.

mywbut.com

12

http://bookboon.com/count/advert/0e9efd82-96d7-e011-adca-22a08ed629e5

To illustrate this….

On the left above:- it is legal, though bad practice, to have a subclass with no constructor because
superclass has a parameterless constructor.

In the centre:- if subclass constructor doesn’t call super, the parameterless superclass constructor will
be called.

On the right:- because superclass has no paramterless constructor, subclass must have a constructor
and it must call super. This is simply because a (super) class with only a parameterized constructor
can only be initialized by providing the required parameter(s).

3.7 Access Control

To enforce encapsulation we normally make instance variables private and provide accessor/mutator
methods as necessary.

The sellCopy() method of Publication needs to alter the value of the variable ‘copies’ it can do this
even if ‘copies’ is a private variable. However Book and Magazine both need to alter ‘copies’.

There are two ways we can do this …

1) make ‘copies’ ‘protected’ rather than ‘private’ – this makes it visible to subclasses, or
2) create accessor and mutator methods.

For variables we generally prefer to create accessors/mutators rather than compromise encapsulation
though protected may be useful to allow subclasses to use methods (e.g. accessors and mutators)
which we would not want generally available to other classes.

MySuperClass()
MySuperClass

MySubClass

MySuperClass()
MySuperClass(x)

MySuperClass

MySubClass()
can call super

MySubClass

MySuperClass(x)
MySuperClass

MySubClass()
must call super

MySubClass

mywbut.com

13

Thus in the superclass Publication we define ‘copies’ as a variable private but create two methods that
can set and access the value ‘copies’. As these accessor methods are public or protected they can be
used within a subclass when access to ‘copies’ is required.

In the superclass Publication we would therefore have….

private int copies;

public int getCopies ()
{
 return copies;
}

public void setCopies(int pCopies)
{
 copies = pCopies;
}

These methods allow superclass to control access to private instance variables.

As currently written they don’t actually impose any restrictions, but suppose for example we wanted to
make sure ‘copies’ is not set to a negative value.

(a) If ‘copies’ is private, we can put the validation (i.e. an if statement) within the setCopies
method here and know for sure that the rule can never be compromised

(b) If ‘copies’ is partially exposed as protected, we would have to look at every occasion
where a subclass method changed the instance variable and do the validation at each
separate place.

We might even consider making these methods protected rather than public themselves so their use is
restricted to subclasses only and other classes cannot interfere with the value of ‘copies’.

Making use of these methods in the sublasses Book and Magazine we have ..

// in Book
public void orderCopies(int pCopies)
{

setCopies(getCopies() + pCopies);
}

mywbut.com

14

// and in Magazine
public void recvNewIssue(String pNewIssue)
{

setCopies(orderQty);
 currIssue = pNewIssue;
}

These statements are equivalent to
mCopies = mCopies + pCopies

and
mCopies = mOrderQty

3.8 Abstract Classes

The idea of a Publication which is not a Book or a Magazine is meaningless, just like the idea of a
Person who is neither a MalePerson nor a FemalePerson. Thus while we are happy to create Book or
Magazine objects we may want to prevent the creation of objects of type Publication.

If we want to deal with a new type of Publication which is genuinely neither Book nor Magazine – e.g.
a Calendar – it would naturally become another new subclass of Publication.

As Publication will never be instantiated ie. we will never create objects of this type the only purpose
of the class exists is to gather together the generalized features of its subclasses in one place for them
to inherit.

We can enforce the fact that Publication is non-instantiable by declaring it ‘abstract’:-

abstract class Publication
{
// etc.

3.9 Overriding Methods

A subclass inherits the methods of its superclass and must therefore always provide at least that set of
methods, and often more. However, the implementation of a method can be changed in a subclass.

This is overriding the method.

To do this we write a new version in the subclass which replaces the inherited one.

The new method should essentially perform the same functionality as the method that it is replacing
however by changing the functionality we can improve the method and make its function more
appropriate to a specific subclass.

mywbut.com

15

For example, imagine a special category of magazine which has a disc attached to each copy – we can
call this a DiscMag and we would create a subclass of Magazine to deal with DiscMags. When a new
issue of a DiscMag arrives not only do we want to update the current stock but we want to check that
the discs are correctly attached. Therefore we want some additional functionality in the recvNewIssue()
method to remind us to do this. We achieve this by redefining recvNewIssue() in the DiscMag
subclass.

Note: when a new issue of Magazine arrives, as these don’t have a disc we want to invoke the original
recNewIssue() method defined in the Magazine class.

When we call the recvNewIssue() method on a DiscMag object Java automatically selects the new
overriding version – the caller doesn’t need to specify this, or even know that it is an overriden method
at all. When we call the recvNewIssue() method on a Magazine it is the method in the superclass that
is invoked.

Implementing DiscMag

To implement DiscMag we must create a subclass of Magazine using extends. No additional instance
variables or methods are required though it is possible to create some if there was a need. The
constructor for DiscMag simply passes ALL its parameters directly on to the superclass and a version
of newIssue() is defined in discMag to overrides the one inherited from Magazine (see code below).

Magazine

mOrderQty
mCurrIssue

adjustQty()
recvNewIssue()

DiscMag

recvNewIssue()

The definition of recvNewIssue()
in DiscMag overrides the
inherited one.

Magazine is not affected – it
retains its original definition of
recvNewIssue()

By showing recvNewIssue() in
DiscMag we are stating that the
inherited method is being
overridden (ie. replaced) as we do
not show in inherited methods in
subclasses.

mywbut.com

16

public class DiscMag extends Magazine
{ // the constructor
 public DiscMag (String pTitle, double pPrice, int pOrderQt,
 String pCurrIssue, int pCopies)
 {
 super(pTitle, pPrice, pOrderQty, pCurrIssue, pCopies);
 }

 // the overridden method
 public void recvNewIssue(String pNewIssue)
 {

super.recvNewIssue(pNewIssue);
 System.out.println("Check discs attached to this
 magazine");
 }
}

Note the user of the super keyword to call a method of the superclass, thus re-using the existing
functionality as part of the replacement, just as we do with constructors. It then additionally displays
the required message for the user.

Operations
Formally, ‘recvNewIssue()’ is an operation. This one operation is implemented by two different
methods, one in Magazine and the overriding one in DiscMag. However this distinction is an
important part of ‘polymorphism’ which we will meet in Chapter 4.

mywbut.com

17

http://bookboon.com/count/advert/44a2fd82-96d7-e011-adca-22a08ed629e5

3.10 The ‘Object’ Class

In Java all objects are (direct or indirect) subclasses of a class called ‘Object’. Object is the ‘root’ of
the inheritance hierarchy in Java. Thus this class exists in every Java program ever created.

If a class is not declared to extend another then it implicitly extends Object.

Object defines no instance variables but several methods. Generally these methods will be overridden
by new classes to make them useful. An example is the toString() method.

Thus when we define our own classes, by default they are direct subclasses of Object.

If our classes are organised into a hierarchy then the topmost superclass in the hierarchy is a direct
subclass of object, and all others are indirect subclasses.

Thus directly, or indirectly, all classes created in Java inherit toString().

3.11 Overriding toString() defined in ‘Object’

The Object class defines a toString() method, one of several useful methods.

toString() has the signature
 public String toString()

Book

author

orderCopies()

Magazine

orderQty
currIssue
adjustQty()
recvNewIssue()

Publication
title
price
copies

sellCopy()

Object

toString()

Not normally
shown on
diagrams

mywbut.com

18

Its purpose is to return a string value that represents the current object. The version of toString()
defined by Object produces output like: "Book@11671b2". This is the class name and the “hash code”
of the object. However to be generally useful we need to override this to give a more
meaningful string.

In Publication
public String toString()
{
 return mTitle;
}

In Book
public String toString()
{
 return super.toString() + " by " + mAuthor;
}

In Magazine
public String toString()
{
 return super.toString() + " (" + mCurrIssue + ")";
}

In the code above toString() originally defined in Object has been completely replaced, ie. overridden,
so that Publication.toString() returns just the title.

The toString() method has been overridden again in Book such that Book.toString() returns title (via
superclass toString() method) and author. Ie. this overridden version uses the version defined in
Publication. Thus if Publication.toString() was rewritten to return the title and ISBN number then
Book.toString() would automatically return the title, ISBN number and author.

Magazine.toString() returns title (via superclass toString() method) and issue

We will not further override the method in DiscMag because the version it inherits from Magazine
is OK.

We could choose to provide more data (i.e. more, or even all, of the instance variable values) in these
strings. The design judgement here is that these will be the most generally useful printable
representation of objects of these classes. In this case title and author for a book, or title and current
issue for a magazine, serve well to uniquely identify a particular publication.

mywbut.com

19

3.12 Summary

Inheritance allows us to factor out common attributes and behaviour. We model the commonalities in
a superclass.

Subclasses are used to model specialized attributes and behaviour.

Code in a superclass is inherited to all subclasses. If we amend or improve code for a superclass it
impacts on all subclasses. This reduces the code we need to write in our programs.

Special rules apply to constructors for subclasses.

A superclass can be declared abstract to prevent it being instantiated (i.e. objects created).

We can ‘override’ inherited methods so a subclass implements an operation differently from its
superclass.

In Java all classes descend from the class ‘Object’

‘Object’ defines some universal operations which can usefully be overriden in our own classes.

mywbut.com

20

http://bookboon.com/count/advert/bda1fd82-96d7-e011-adca-22a08ed629e5

