Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Database Management Systems

Code: PCC-CS601

Contact: 3L

Name	of the Course:	Database Management Systems				
Course Code: PCC-CS601		Semester: VI				
Duration:6 months		Maximum Marks:100				
Teach	ning Scheme		Examination Scheme			
Theor	ry:3 hrs./week		Mid Semester exam: 15			
Tutor	ial: NIL		Assignment and Quiz: 10 marks			
			Attendance: 5 marks			
Practical: hrs./week			End Semester Exam: 70 Marks			
Credi	t Points:	3				
Objec	Objective:					
1	To understand the different issues involved in the design and implementation of a database system.					
2	To study the physical and logical database designs, database modeling, relational, hierarchical, and network models					
3	To understand and use data manipulation language to query, update, and manage a database					
4	To develop an understanding of essential DBMS concepts such as: database security,					
	integrity, concurrency, distributed database, and intelligent database, Client/Server					
	(Database Server), Data Warehousing.					
5	To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.					
6	To understand the different issues involved in the design and implementation of a database system.					

Unit	Content	Hrs/Unit	Marks/Unit
	Database system architecture:		
1	Data Abstraction, Data	9	
	Independence, Data Definition		
	Language(DDL),Data Manipulation		
	Language(DML).		
	Data models: Entity-relationship		
	model, network model, relational		
	and object oriented data models,		
	integrity constraints, data		
	manipulation operations.		

2	Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQLserver.	13	
	Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Losslessdesign.		
	Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.		
3	Storage strategies: Indices, B-trees, hashing.	3	
4.	Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multiversion and optimistic Concurrency Control schemes, Database recovery.	5	
5	Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection.	3	
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.	3	

Text book and Reference books:

- 1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry
- F. Korth, S. Sudarshan, McGraw-Hill.
- 2. "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer Science Press.
- 3. Database Management Systems, R.P. Mahapatra, Khanna Publishing House, New Delhi (AICTE Recommended Textbook $-\,2018)$

4. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, 5. Pearson Education "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley

Course Outcomes:

On completion of the course students will be able to

- 1. For a given query write relational algebra expressions for that query and optimize the developed expressions
- 2. For a given specification of the requirement design the databases using E R method and normalization.
- 3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, and DB2.
- 4. For a given query optimize its execution using Query optimizationalgorithms
- 5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, anddurability.
- 6. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.