Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) SYLLABUS FOR BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (Effective from academic session 2018-19)

Subject Code: G Category: Professional Elective Courses		
Subject Name: Mechatronics	Semester: Sixth	
L-T-P: 3-0-0	Credit: 3	
Pre-Requisites: Fluid Mechanics and Fluid Machinery, Kinematics and Theory of		
Machines, Basic Electrical Engineering, Basic Electronics Engineering		

Course Objectives:

To provide knowledge on electrical circuits, signal conditioning. To make familiar about control system and power electronics in designing mechatronic system

Course Contents:

Module No.	Description of Topic	Contact Hrs.
1	Introduction to Mechatronics: Definition, Mechatronics in design and manufacturing, Comparison between Traditional and Mechatronic approach; Concurrent engineering	3
2	Review of fundamentals of electronics: Logic gates and their operations, Signal processing devices, Data conversion devices, Input and output devices. Sensors and Transducers, Actuators, Limit switches, Relays	6
3	Control Systems: Open loop and closed loop control, block diagrams, transfer functions, Laplace transforms.	3
5	Electrical Drives: Stepper motors, servo drives.	2
6	Mechanical Drives: Different mechanisms, Ball screws, Linear motion bearings, Transfer systems.	3
7	Pneumatic and Hydraulic Drives: Elements of pneumatic and hydraulic drives, comparison between them. Design of pneumatic and hydraulic circuits, symbolic representations of such circuits indicating different valves, actuators, etc.	4
8	Basics of 8085 microprocessor, programmable register architecture, buses, memory mapping, clock pulse and data transfer operations, and simple assembly and mnemonic programming on 8085 microprocessor.	5
9	Use of On-Off, PI and PID controllers to control different drives, Programming in PLC controller using Ladder diagram.	4
10	Mathematical modeling of physical systems, such as spring-mass vibration system, linear and rotory motion and its Laplace Transform.	2
11	Basics of time domain analysis, Introduction to discrete-time systems and Z-transform.	2
12	Introduction to Mechatronic systems, such as automatic brake, door closing and opening, robot, CNC machine, AGV, etc.	2

Course Outcomes:

At the end of the course, the student will be able to

- 1. Model and analyze mechatronic systems for an engineering application
- 2. Identify sensors, transducers and actuators to monitor and control the behavior of process or product.
- 3. Develop PLC programs for an engineering application.
- 4. Evaluate the performance of mechatronic systems.

Books:

- 1. W. Bolton, Mechatronics, 5th Edition, Addison Wesley Longman Ltd., 2010.
- 2. D. Shetty and R. Kolk, Mechatronics System Design, 3rd Edition, PWS Publishing, 2009.
- 3. D.G. Alciatore & M.B. Histand, Introduction to Mechatronics and Measurement systems, 4th Edition, McGraw Hill, 2006.
- 4. A. Smaili and F. Arnold, Applied Mechatronics, Oxford University Press, Indian Edition, 2007.
- 5. M.D. Singh and J.G. Joshi, Mechatronics, Prentice Hall of India, 2006.
- 6. K.K. Appu Kuttan, Introduction to Mechatronics, Oxford University Press, New Delhi, 2007.
- 7. HMT Ltd., Mechatronics, McGraw Hill Publication, 2017.
- 8. F.H. Raven, Automatic Control Engineering, McGraw Hill India, 2013.
- 9. K. Ogata, Modern Control Engineering, Prentice Hall, 2010.
- 10. B.C. Kuo, Automatic Control Systems, Prentice Hall, 1975.
- 11. A. Ambikapthy, Control Systems, Khanna Publishing House, 2015.