Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

Course Code: PC-EE-601Semester: 6thDuration: 6 monthsMaximum Marks: 100Teaching SchemeExamination SchemeTheory: 3 hrs/weekMid Semester Exam: 15 MarksTutorial: 0hr/weekAssignment & Quiz: 10 MarksCredit Points: 3Attendance: 05 MarksEnd Semester Exam: 70 MarksObjective:		
Teaching SchemeExamination SchemeTheory: 3 hrs/weekMid Semester Exam: 15 MarksTutorial: 0hr/weekAssignment & Quiz: 10 MarksCredit Points: 3Attendance: 05 MarksEnd Semester Exam: 70 Marks		
Theory: 3 hrs/weekMid Semester Exam: 15 MarksTutorial: 0hr/weekAssignment & Quiz: 10 MarksCredit Points: 3Attendance: 05 MarksEnd Semester Exam: 70 Marks		
Theory: 3 hrs/weekMid Semester Exam: 15 MarksTutorial: 0hr/weekAssignment & Quiz: 10 MarksCredit Points: 3Attendance: 05 MarksEnd Semester Exam: 70 Marks		
Tutorial: 0hr/weekAssignment & Quiz:10MarksCredit Points: 3Attendance:05MarksEnd Semester Exam:70MarksOutputOutputOutput		
Credit Points: 3 Attendance: 05 Marks End Semester Exam: 70 Marks	d Semester Exam: 15 Marks	
End Semester Exam: 70 Marks	Assignment & Quiz: 10 Marks	
Objective:		
Objective		
Objective.		
1. To understand the method of representation of power system components		
To know about loacation and components of a distribution substation.		
3. To understand different methods of load flow studies.		
4. To determine faults in Electrical systems.		
5. To understand the principle of power system stability.		
6. To understand the principle of relays and methods of protection of power system		
To solve numerical problems on the topics studied.		
Pre-Requisite		
1. Electric Circuit Theory (PC-EE-301)		
2. Electromagnetic field theory (PC-EE-303)		
3. Power system-I (PC-EE-502)		
Unit Content Hrs	Marks	
1 Representation of Power system components: Single-phase		
representation of balanced three phase networks, the one-line		
diagram and the impedance or reactance diagram, per unit (PU) $\mid 02$		
system.		
Distribution substation: Types of substations, location of		
substations, substation equipments and accessories, earthling 05		
2 (system & equipment), feeder and distributors, radial and loop		
systems.		
Load flow studies: Network model formulation, formation of Ybus,		
load flow problem, Gauss-Siedel method, Newton-Raphson 05		
method, Decoupled load flow studies, comparison of load flow		
3 methods.		
Faults in Electrical systems: Transient on a transmission line, short		
4 circuit of a synchronous machine under no load & loaded condition. 08		
Symmetrical component transformation, sequence impedance and		
sequence network of power system, synchronous machine,		
transmission lines and transformers. Symmetrical component		
analysis of unsymmetrical faults, single line-to –ground fault, lineto-		
line fault, double line-to- ground fault		
Power system stability: Steady state stability, transient stability,		

5	equal area criteria, swing equation, multi machine stability concept	04	
6	Power system protection: Protective zones, Relaying elements and quantities. Protective relays, basic requirements and type of protection, phase and amplitude comparator, grading (time & current), classification of Electromagnetic relays, Directional relay, Distant relay, Differential relay, basic aspects of static and digital relays, relay protection scheme for transformer, feeder, generators and motors. Circuit breakers, circuit breaking transients, transient recovery voltage, current chopping and resistance switching, circuit breaker rating, arc and arc extinction, circuit breaker types, oil circuit breaker, vacuum circuit breaker, air blast circuit breaker, SF6 circuit breaker and operating mechanism, advantages and disadvantages of different types		

Text book:

1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.

- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S.Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I,II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent power system components in line diagrams.
- 2. Determine the location of distribution substation.
- 3. Determine the performance of power system with the help of load flowv studies.
- 4. Analyse faults in Electrical systems.
- 5. Determine the stabilty of Power system.
- 6. Explain principle of operation of different power system protection equipments.
- 7. Solve numerical problems related to representation, load flow, faults, stabilty and protection of power system.

Special Remarks (if any)

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.