Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) 1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Course Code : BS-M101	Category : Basic Science Course	
Course Title : Mathematics – I A	Semester : First (CSE & IT)	
L-T-P : 3-1-0	Credit: 4	
Pre-Requisites: High School Mathematics		

Module	Description of Topic	Lectures
No.		Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	
	Gamma functions and their properties; Applications of definite integrals to evaluate	0
1	surface areas and volumes of revolutions.	8
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	<i>.</i>
2		6
	Matrices:	
	Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear	
3	systems of equations, linear Independence, rank of a matrix, determinants,	
	Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan	/
	elimination.	
	Vector Spaces:	
	Vector Space, linear dependence of vectors, Basis, Dimension; Linear	
4	transformations (maps), Range and Kernel of a linear map, Rank and Nullity,	0
	erse of a linear transformation, Rank-Nullity theorem, composition of linear	
	maps, Matrix associated with a linear map.	
	Vector Spaces (Continued):	
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal	
5	Matrices, Eigenbases.	10
	Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	10

Course Outcomes:

The students will be able to:

- Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.
- Understand the domain of applications of mean value theorems to engineering problems.
- Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.
- Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.
- Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

Learning Resources:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 2. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 3. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 4. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 5. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 6. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 7. Hoffman and Kunze: Linear algebra, PHI.
- 8. Reena Garg, Engineering Mathematics-I, Khanna Publishers.