Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2018-2019)

Biology Code: BSC 401 Contacts: 2L+1T

Name	of the Course:	Biology			
Course	e Code: BSC-401	Semester: IV			
Durati	on: 6 months	Maximum Marks:100			
Teaching Scheme			Examination Scheme		
Theory: 2hrs./week			Mid Semester exam: 15		
Tutorial: 1 hour			Assignment and Quiz: 10 marks		
			Attendance: 5 marks		
Practical: NIL			End Semester Exam: 70 Marks		
Credit Points: 3		3			
Object	tive:				
1	Bring out the fundamental differences between science and engineering				
2	Discuss how biological observations of 18th Century that lead to major				
	discoveries				
Pre-Re	equisite:				
1	Basic knowledge of Physics ,Chemistry and mathematics				

Unit	Content	Hrs/Unit	Marks/Unit
1	To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the	2	
	fundamental importance of observations in any scientific inquiry.		
2	The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy	3	
	Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c)		

	energy and Carbon utilisation -Autotrophs,		
	heterotrophs, lithotropes (d) Ammonia excretion		
	– aminotelic, uricoteliec, ureotelic (e)		
	Habitata- acquatic or terrestrial (e) Molecular		
	taxonomy- three major kingdoms of life. A		
	given organism can come under different		
	category based on classification. Model organisms		
	for the study of biology come from different		
	groups. E.coli, S.cerevisiae, D. Melanogaster,		
	C. elegance, A. Thaliana, M. musculus		
	To convey that "Genetics is to biology what		
3	Newton's laws are to Physical Sciences" Mendel's	4	
	laws, Concept of segregation and independent		
	assortment. Concept of allele. Gene		
	-		
	mapping, Gene interaction, Epistasis. Meiosis and		
	Mitosis be taught as a part of genetics.		
	Emphasis to be give not to the mechanics of cell		
	division nor the phases but how genetic		
	material passes from parent to offspring.		
	Concepts of recessiveness and dominance.		
	·		
	Concept of mapping of phenotype to genes.		
	Discuss about the single gene disorders in		
	humans.		
	Discuss the concept of complementation using		
	human genetics.		
	Biomolecules: To convey that all forms of life have		
4		4	
4.	the same building blocks and yet the	4	
	manifestations are as diverse as one can imagine		
	Molecules of life. In this context discuss		
	monomeric units and polymeric structures.		
	Discuss about sugars, starch and cellulose. Amino		
	acids and proteins. Nucleotides and		
	-		
	DNA/RNA.Two carbon units and lipids.		
5	Enzymes: To convey that without catalysis life	4	
	would not have existed on earth		
	Enzymology: How to monitor enzyme catalysed		
	reactions. How does an enzyme catalyse		
	• •		
	reactions? Enzyme classification. Mechanism of		
	enzyme action. Discuss at least two		
	examples. Enzyme kinetics and kinetic		
	parameters. Why should we know these		
	parameters to understand biology? RNA catalysis.		
6	Information Transfer: The molecular basis of	4	
0		4	
	coding and decoding genetic information is		
	universal		
	Molecular basis of information transfer. DNA as a		
	genetic material. Hierarchy of DNA		

		II	
	structure- from single stranded to double helix to		
	nucleosomes. Concept of genetic code.		
	Universality and degeneracy of genetic code.		
	Define gene in terms of complementation and		
	recombination.		
7	Macromolecular analysis: How to analyse	5	
	biological processes at the reductionist level		
	Proteins- structure and function. Hierarch in		
	protein structure. Primary secondary, tertiary and		
	quaternary structure. Proteins as enzymes,		
	transporters, receptors and structural elements.		
8	Metabolism: The fundamental principles of	4	
	energy transactions are the same in physical and		
	biological world.		
	Thermodynamics as applied to biological systems.		
	Exothermic and endothermic versus		
	endergonic and exergoinc reactions. Concept of		
	Kegand its relation to standard free energy.		
	Spontaneity. ATP as an energy currency. This		
	should include the breakdown of glucose to		
	CO ₂ + H ₂ O (Glycolysis and Krebs cycle) and		
	synthesis of glucose from CO ₂ and H ₂ O		
	(Photosynthesis). Energy yielding and energy		
	consuming reactions. Concept of Energy		
	charge		
9	Microbiology Concept of single celled organisms.	3	
	Concept of species and strains. Identification and		
	classification of microorganisms. Microscopy.		
	Ecological aspects of single celled		
	organisms. Sterilization and media compositions.		
	Growth kinetics.		

Text books/ reference books:

1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd

2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H. John Wiley and Sons

3. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company

4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

5. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

Course Outcomes:

On completion of the course students will be able to

BSC-401.1 Describe how biological observations of 18_{th} Century that lead to major discoveries.

BSC-401.2 Convey that classification *per se* is not what biology is all about but highlight the underlying

criteria, such as morphological, biochemical and ecological

BSC-401.3 Highlight the concepts of recessiveness and dominance during the passage of genetic material

from parent to offspring

BSC-401.4 Convey that all forms of life have the same building blocks and yet the manifestations are as

diverse as one can imagine

BSC-401.5 Classify enzymes and distinguish between different mechanisms of enzyme action.

BSC-401.6 Identify DNA as a genetic material in the molecular basis of information transfer.

BSC-401.7 Analyse biological processes at the reductionistic level

BSC-401.8 Apply thermodynamic principles to biological systems.

BSC-401.9 Identify and classify microorganisms.