
Graph Theory 

Representation of Graphs: 

There are two different sequential representations of a graph. They are Adjacency Matrix 

representation and Path Matrix representation 

Adjacency Matrix Representation 

Suppose G is a simple directed graph with m nodes, and suppose the nodes of G have been 

ordered and are called v1, v2, . . . , vm. Then the adjacency matrix A = (aij) of the graph G is 

the m x m matrix defined as follows: 

1 if vi is adjacent to Vj, that is, if there is an edge (Vi, Vj) aij =0 otherwise 

Suppose G is an undirected graph. Then the adjacency matrix A of G will be a symmetric 

matrix, i.e., one in which aij = aji; for every i and j. 

Drawbacks 

• It may be difficult to insert and delete nodes in G.

• If the number of edges is 0(m) or 0(m log2 m), then the matrix A will be sparse, hence

a great deal of space will be wasted. 

Path Matrix Representation 

Let G be a simple directed graph with m nodes, v1,v2, . . . ,vm. The path matrix of G is the 

m-square matrix P = (pij) defined as follows:

1 if there is a path from Vi to Vj Pij =0 otherwise 

Isomorphism: 

Let G1 and G1 be two graphs and let f be a function from the vertex set of G1 to the vertex 

set of G2. Suppose that f is one-to-one and onto & f(v) is adjacent to f(w) in G2 if and only if 

v is adjacent to w in G1. 

Then we say that the function f is an isomorphism and that the two graphs G1 and G2 are 

isomorphic. So two graphs G1 and G2 are isomorphic if there is a one-to-one correspondence 

between vertices of G1 and those of G2 with the property that if two vertices of G1 are 

adjacent then so are their images in G2. If two graphs are isomorphic then as far as we are 

concerned they are the same graph though the location of the vertices may be different. 



Example: 

The two graphs shown below are isomorphic, 

despite their different looking drawings. 

Graph G Graph 

H 

An isomorphism 

between G and H 

ƒ(a) = 1 

ƒ(b) = 6 

ƒ(c) = 8 

ƒ(d) = 3 

ƒ(g) = 5 

ƒ(h) = 2 

ƒ(i) = 4 

ƒ(j) = 7 

Euler circuits: 

In graph theory, an Eulerian trail is a trail in a graph which visits every edge exactly once. 

Similarly, an Eulerian circuit is an Eulerian trail which starts and ends on the same vertex. 

They were first discussed by Leonhard Euler while solving the famous Seven Bridges of 

Königsberg problem in 1736. Mathematically the problem can be stated like this: 

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path starting 

and ending on the same vertex) which visits each edge exactly once? 



Euler proved that a necessary condition for the existence of Eulerian circuits is that all 

vertices in the graph have an even degree, and stated without proof that connected graphs 

with all vertices of even degree have an Eulerian circuit. The first complete proof of this  

latter claim was published in 1873 by Carl Hierholzer. 

The term Eulerian graph has two common meanings in graph theory. One meaning is a 

graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. 

These definitions coincide for connected graphs. 

For the existence of Eulerian trails it is necessary that no more than two vertices have an odd 

degree; this means the Königsberg graph is not Eulerian. If there are no vertices of odd 

degree, all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all 

Eulerian trails start at one of them and end at the other. Sometimes a graph that has an 

Eulerian trail but not an Eulerian circuit is called semi-Eulerian. 

An Eulerian trail, Eulerian trail or Euler walk in an undirected graph is a path that uses 

each edge exactly once. If such a path exists, the graph is called traversable or semi- 

eulerian. 

An Eulerian cycle, Eulerian circuit or Euler tour in an undirected graph is a cycle that uses 

each edge exactly once. If such a cycle exists, the graph is called unicursal. While such 

graphs are Eulerian graphs, not every Eulerian graph possesses an Eulerian cycle. 

For directed graphs path has to be replaced with directed path and cycle with directed cycle. 

The definition and properties of Eulerian trails, cycles and graphs are valid for multigraphs as 

well. 

This graph is not Eulerian, therefore, a solution does not exist. 

Every vertex of this graph has an even degree, therefore this is an Eulerian graph. Following 

the edges in alphabetical order gives an Eulerian circuit/cycle. 



Hamiltonian graphs: 

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path 

in an undirected graph which visits each vertex exactly once. A Hamiltonian cycle (or 

Hamiltonian circuit) is a cycle in an undirected graph which visits each vertex exactly once 

and also returns to the starting vertex. Determining whether such paths and cycles exist in 

graphs is the Hamiltonian path problem which is NP-complete. 

Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the 

Icosian game, now also known as Hamilton's puzzle, which involves finding a Hamiltonian 

cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the Icosian 

Calculus, an algebraic structure based on roots of unity with many similarities to the 

quaternions (also invented by Hamilton). This solution does not generalize to arbitrary 

graphs. 

A Hamiltonian path or traceable path is a path that visits each vertex exactly once. A graph 

that contains a Hamiltonian path is called a traceable graph. A graph is Hamilton- 

connected if for every pair of vertices there is a Hamiltonian path between the two vertices. 

A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that  visits 

each vertex exactly once (except the vertex which is both the start and end, and so is visited 

twice). A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. 

Similar notions may be defined for directed graphs, where each edge (arc) of a path or cycle 

can only be traced in a single direction (i.e., the vertices are connected with arrows and the 

edges traced "tail-to-head"). 

A Hamiltonian decomposition is an edge decomposition of a graph into Hamiltonian 

circuits. 

Examples 

• a complete graph with more than two vertices is Hamiltonian

• every cycle graph is Hamiltonian

• every tournament has an odd number of Hamiltonian paths

• every platonic solid, considered as a graph, is Hamiltonian

Planar Graphs: 

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be 

drawn on the plane in such a way that its edges intersect only at their endpoints. 

A planar graph already drawn in the plane without edge intersections is called a plane graph 

or planar embedding of the graph. A plane graph can be defined as a planar graph with a 

mapping from every node to a point in 2D space, and from every edge to a plane curve, such 



that the extreme points of each curve are the points mapped from its end nodes, and all curves 

are disjoint except on their extreme points. Plane graphs can be encoded by combinatorial 

maps. 

It is easily seen that a graph that can be drawn on the plane can be drawn on the sphere as 

well, and vice versa. 

The equivalence class of topologically equivalent drawings on the sphere is called a planar 

map. Although a plane graph has an external or unbounded face, none of the faces of a 

planar map have a particular status. 

Applications 

Telecommunications – e.g. spanning trees 

Vehicle routing – e.g. planning routes on roads without underpasses VLSI – e.g. 

laying out circuits on computer chip. 

The puzzle game Planarity requires the player to "untangle" a planar graph so that none of 

its edges intersect. 

Example graphs 

Planar non planar 

Chromatic Numbers: 

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of 

labels traditionally called "colors" to elements of a graph subject to certain constraints. In its 

simplest form, it is a way of coloring the vertices of a graph such that no two  adjacent 

vertices share the same color; this is called a vertex coloring. Similarly, an edge coloring 

assigns a color to each edge so that no two adjacent edges share the same color, and a face 

coloring of a planar graph assigns a color to each face or region so that no two faces that 

share a boundary have the same color. 

Vertex coloring is the starting point of the subject, and other coloring problems can be 

transformed into a vertex version. For example, an edge coloring of a graph is just a vertex 

coloring of its line graph, and a face coloring of a planar graph is just a vertex coloring of its 

planar dual. However, non-vertex coloring problems are often stated and studied as is. That is 



partly for perspective, and partly because some problems are best studied in non-vertex form, 

as for instance is edge coloring. 

The convention of using colors originates from coloring the countries of a map, where each 

face is literally colored. This was generalized to coloring the faces of a graph embedded in 

the plane. By planar duality it became coloring the vertices, and in this form it generalizes to 

all graphs. In mathematical and computer representations it is typical to use the first few 

positive or nonnegative integers as the "colors". In general one can use any finite set as the 

"color set". The nature of the coloring problem depends on the number of colors but not on 

what they are. 

Graph coloring enjoys many practical applications as well as theoretical challenges. Beside 

the classical types of problems, different limitations can also be set on the graph, or on the 

way a color is assigned, or even on the color itself. It has even reached popularity with the 

general public in the form of the popular number puzzle Sudoku. Graph coloring is still a  

very active field of research. 

A proper vertex coloring of the Petersen graph with 3 colors, the minimum number possible. 

Vertex coloring 

When used without any qualification, a coloring of a graph is almost always a proper vertex 

coloring, namely a labelling of the graph’s vertices with colors such that no two vertices 

sharing the same edge have the same color. Since a vertex with a loop could never  be 

properly colored, it is understood that graphs in this context are loopless. 

The terminology of using colors for vertex labels goes back to map coloring. Labels like red 

and blue are only used when the number of colors is small, and normally it is understood that 

the labels are drawn from the integers {1,2,3,...}. 



A coloring using at most k colors is called a (proper) k-coloring. The smallest number of 

colors needed to color a graph G is called its chromatic number, χ(G). A graph that can be 

assigned a (proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number  

is exactly k. A subset of vertices assigned to the same color is called a color class, every such 

class forms an independent set. Thus, a k-coloring is the same as a partition of the vertex set 

into k independent sets, and the terms k-partite and k-colorable have the same meaning. 

Directed Graphs 

A directed graph G, also called a digraph or graph is the same as a multigraph except that 

each edge e in G is assigned a direction, or in other words, each edge e is identified with an 

ordered pair (u, v) of nodes in G. 

Indegree : The indegree of a vertex is the number of edges for which v is head 

Outdegree :The outdegree of a node or vertex is the number of edges for which v is tail. 

Example 

Outdegree of 1 =1 

Outdegree of 2 =2 

Indegree of 1=1 

Indegree of 2 = 2 

Simple Directed Graph 

A directed graph G is said to be simple if G has no parallel edges. A simple graph G may 

have loops, but it cannot have more than one loop at a given node. 

Directed Acyclic Graph (DAG) 

A directed acyclic graph (DAG) is a finite directed graph with no directed cycles. That is, it 

consists of finitely many vertices and edges (also called arcs), with each edge directed from 

one vertex to another, such that there is no way to start at any vertex v and follow a 

consistently-directed sequence of edges that eventually loops back to v again. Equivalently, a 

DAG is a directed graph that has a topological ordering, a sequence of the vertices such that 

every edge is directed from earlier to later in the sequence. Every directed acyclic graph has 



a topological ordering, an ordering of the vertices such that the starting endpoint of every 

edge occurs earlier in the ordering than the ending endpoint of the edge. The existence of 

such an ordering can be used to characterize DAGs: a directed graph is a DAG if and only if  

it has a topological ordering. 

Labeled or Weighted Graph 

If the weight is assigned to each edge of the graph then it is called as Weighted or Labeled 

graph. 

The definition of a graph may be generalized by permitting the following: 

• Multiple edges: Distinct edges e and e' are called multiple edges if they connect the

same endpoints, that is, if e = [u, v] and e' = [u, v].

• Loops: An edge e is called a loop if it has identical endpoints, that is, if e = [u, u].

• Finite Graph:A multigraph M is said to be finite if it has a finite number of nodes

and a finite number of edges.

Trees: 

A tree is an undirected graph in which any two vertices are connected by exactly one path. 

Every acyclic connected graph is a tree, and vice versa. A forest is a disjoint union of trees,  

or equivalently an acyclic graph that is not necessarily connected. 

A tree is an undirected graph G that satisfies any of the following equivalent conditions: 

• G is connected and acyclic (contains no cycles).

• G is acyclic, and a simple cycle is formed if any edge is added to G.

• G is connected, but would become disconnected if any single edge is removed from G.

• G is connected and the 3-vertex complete graph K3 is not a minor of G.

• Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent 

to any of the following conditions: 

• G is connected and has n − 1 edges.

• G is connected, and every subgraph of G includes at least one vertex with zero or one

incident edges. (That is, G is connected and 1-degenerate.)



• G has no simple cycles and has n − 1 edges.

Spanning Trees: 

In the mathematical field of graph theory, a spanning tree T of a connected,  undirected 

graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G. 

Informally, a spanning tree of G is a selection of edges of G that form a tree spanning every 

vertex. That is, every vertex lies in the tree, but no cycles (or loops) are formed. On the other 

hand, every bridge of G must belong to T. 

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G 

that contains no cycle, or as a minimal set of edges that connect all vertices. 

Given an undirected and connected graph G=(V,E), a spanning tree of the graph G is a tree 

that spans G(that is, it includes every vertex of G) and is a subgraph of G (every edge in the 

tree belongs to G) 

Minimum Spanning Tree 

The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can 

be many spanning trees. Minimum spanning tree is the spanning tree where the cost is 

minimum among all the spanning trees. There also can be many minimum spanning trees. 

There are two famous algorithms for finding the Minimum Spanning Tree: 

Kruskal’s Algorithm 

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing 

spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an 

edge which has least weight and add it to the growing spanning tree. 

Algorithm Steps: 

• Sort the graph edges with respect to their weights.

• Start adding edges to the MST from the edge with the smallest weight until the edge

of the largest weight.

• Only add edges which doesn't form a cycle , edges which connect only disconnected

components.

In Kruskal’s algorithm, at each iteration we will select the edge with the lowest weight. So, 

we will start with the lowest weighted edge first i.e., the edges with weight 1. After that we 

will select the second lowest weighted edge i.e., edge with weight 2. Notice these two edges 



are totally disjoint. Now, the next edge will be the third lowest weighted edge i.e., edge with 

weight 3, which connects the two disjoint pieces of the graph. Now, we are not allowed to 

pick the edge with weight 4, that will create a cycle and we can’t have any cycles. So we will 

select the fifth lowest weighted edge i.e., edge with weight 5. Now the other two edges will 

create cycles so we will ignore them. In the end, we end up with a minimum spanning tree 

with total cost 11 ( = 1 + 2 + 3 + 5). 

Prim’s Algorithm 

Prim’s Algorithm also use Greedy approach to find the minimum spanning tree. In Prim’s 

Algorithm we grow the spanning tree from a starting position. Unlike an edge in Kruskal's, 

we add vertex to the growing spanning tree in Prim's. 

Algorithm Steps: 

• Maintain two disjoint sets of vertices. One containing vertices that are in the growing

spanning tree and other that are not in the growing spanning tree.

• Select the cheapest vertex that is connected to the growing spanning tree and is not in

the growing spanning tree and add it into the growing spanning tree. This can be done

using Priority Queues. Insert the vertices, that are connected to growing spanning tree,

into the Priority Queue.

• Check for cycles. To do that, mark the nodes which have been already selected and

insert only those nodes in the Priority Queue that are not marked.



In Prim’s Algorithm, we will start with an arbitrary node (it doesn’t matter which one) and 

mark it. In each iteration we will mark a new vertex that is adjacent to the one that we have 

already marked. As a greedy algorithm, Prim’s algorithm will select the cheapest edge and 

mark the vertex. So we will simply choose the edge with weight 1. In the next iteration we 

have three options, edges with weight 2, 3 and 4. So, we will select the edge with weight 2 

and mark the vertex. Now again we have three options, edges with weight 3, 4 and 5. But we 

can’t choose edge with weight 3 as it is creating a cycle. So we will select the edge with 

weight 4 and we end up with the minimum spanning tree of total cost 7 ( = 1 + 2 +4). 




