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Exact and Approximate Numbers:

The numbers that arise in technical applications are better described as “exact numbers” because
there is not the sort of uncertainty in their values that was described above. They are the result of
counting discrete items. For example, one dozen eggs is exactly 12 eggs, never 12.1 eggs or 11.9

eggs.

Approximate number is defined as a number approximated to the exact number and there is
always a difference between the exact and approximate numbers.
For example, 3, 6,9 are exact numbers as they do not need any approximation.

But, v2, m,+/3 are approximate numbers as they cannot be expressed exactly by a finite digits.
They can be written as 1.414, 3.1416, 1.7320 etc. which are only approximations to the true
values.

Rules for Rounding Off Numbers

Discard all the digits to the right of the n th place, if the

(n + 1)th digitis less than 5, leave the n th digit unchanged. If the (n + 1)th digit is greater
than 5 add one to the n th digit.

Ex: If 27.73 is rounded off to three decimal places, the result is 27.7, since the digit 3 is being
dropped. If 27.76 is rounded off to three decimal places, the value is 27.8, since the digit 6 is
being dropped.

If the discarded digit is exactly 5 then leave the n th digit unaltered if it’s an even number and
add one to the n th digit if it’s an odd number.

Ex: If 27.75 is rounded off to three significant figures, the value 27.8 results, since mber only the
digit 5 is being dropped.

If 9.2652 is rounded off to three significant figures, the value 9.27 results, since the digit 5 is
being dropped.

Significant figures

The digits which are used to represent a number are called significant figures. Thus, 1,2, ...,9 are
always significant and 0 is significant except if it is used to fix decimal places or to discard digits
or to fill the unknown places. Zeros between two significant digits are always significant.

Ex:
Number Significant
figures
100 1
0.00123 3
10.23 4




Types of errors

1. Inherent Errors:The errors that are already present in the statement of the problem before its
solution are called inherent errors. We cannot control this kind of errors.

Ex:

y 113 1.001| 0.98

Printing mistake:

y 1.13 1.01 0.98

2. Computational Errors:There are two types of computational errors such as

(a) Round-off Errors:It arises when a calculated number is rounded off to a fixed number of
digits; the difference between the exact and the rounded off number is called Round-off error.
We can minimize this error by taking more decimal places during the calculation and at the
last step round- off the number upto its desired accuracy.

Ex:Let the exact number = 29.3257
Its 3 decimal places approximation = 29.326
Therefore, the Round-off error= (29.3257 ~ 29.326)

(b) Truncation Errors:If approximation is used or infinite process be replaced by finite one
during calculation, then the errors involved are called Truncation Errors. We can minimize
this error by taking more decimal places during the computation or by taking more terms in
the infinite expansion.

x*  x®
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Ex:cosx = 1 —=+ .
20 4 el

2 4
Let this infinite series be truncated to cosx = 1 — =+ = = C(say)
Then the truncation error = (cosx~ C)

Computation of errors

1. Error:Let V; = True value
andV, = Approximate value of a number. Then the error is
E = VT - VA.

2. Absolute Error:The absolute error is denoted by E4 and defined by
Eq = |Vp — Vyl.




3. Relative Error:The relative error is denoted byER and defined by

_Ea _ Vo~ Vil
v v
4. Percentage Error:The percentage error is denoted by E, and defined by
_ _Vr =Vl
Ep =Egrx100% = V—X 100%
T

Problem:Approximate % to 4 significant figures and find the absolute error, relative error and
percentage error.

Interpolation

Let the analytic formula of £ (x) is not known but the values of f(x) are known for (n + 1)
distinct values of x, say, x,, x4, X5, ..., X, (n0de points) and the corresponding entries are given
by vo = f(x0), 1 = f(x1), ..., Yn = f(x,). Our problem is to compute the value of (x) , at
least approximately, for a given node point x lies in the vicinity of the above given values of the
node points. The process by which we can find the required value of f(x) for any other value of
x in the interval [x,, x,,] is called Interpolation. When x lies slightly outside the interval [x,, x,,]
then the process is called Extrapolation.

Newton’s Forward Interpolation Formula

Let a function f(x) is known for (n + 1) distinct and equispaced node points x,, X1, ..., X-_q,
Xy, Xpyiy e Xn—1,Xn SUChthat x,. = xy +7h, v =0,1,2,...,nand h is the step length. The

corresponding entries are given by y, = f(x0), y1 = f(x1), .., Yn = f(x).

Now, x,, — x, = xo + nh — (xo + rh)

Our objective is to find a polynomial P(x) of degree less than or equal to n such that P (x)
replaces f(x) on the set of node points x,.,r = 0(1)n ie,

P(x,)=f(x,),r=0Dn Q)
Let us take the form of P(x) as

P(x) =Ag+ A1 (x —x¢) + Ay (x — x0) (x — x1) + A3(x — x¢) (x — x1)
(Xx—2x)+ -+ A,(x—x0) (X —x1) (X = Xp_q1)erieriiiiiiiin (3)
The constants A;,(j = 0(1)n) are to be determined by using equation (2).

Putting x = x, in equation (3) we get,



P(xo) = Ao
or,yo = 4o
Putting x = x4 in equation (3) we get,
P(x1) = Ag + A1 (%1 — xp)
or, y1 = Yo + A1 (h)

Y1—Yo Ayo
on A =TT =S

Putting x = x,in equation (3) we get,
P(xz) = A + A1(xz — xo) + Az (xz — x0) (X2 — x1)
or, y; = yo + (2522) (2h) + A, (2h) (h)

or, 2h?A; = ¥, — ¥o + 2(y1 — ¥o)

A%y,

OI', A2 == 2h2

Putting x = xin equation (3) we get,
P(x3) = Ag + Ay (x3 — x0) + Az (x5 — x0) (x3 — x1) + A3 (x5 — x0) (x5 — x1) (x5 — x3)
or, y3 = yo + (2222) (3h) + 22220 (3h)(2h) + A3(3h)(2h) ()

or, 31h34; = y3 — 3y, + 3y, — yo = Ay,

_ A3y,
or, A; = e
. ATy,
Similarly, A, = -

Substituting A,.’s value in (3) we have,

Ay A%y,
fx) = P(x) =y, + (x _xo)T'i‘ (x_xO)(x_xl)Z!hz + (x — %) (x — x1)
A3 Ay,
(=) g3 + ok (6 = x) (¥ = 3) v (3 = Hn )

This formula is known as Newton’s Forward Interpolation Formula. It is used mainly in
computing f(x) when x lies in the beginning of the table.



Example: Find the value of f(0.5)suitable interpolation formula from the following table:

X 0 1 2 3
F(x) 1 2 11 | 34

Ans: 0.875.
Newton’s Backward Interpolation Formula

Let a function f(x) is known for (n + 1) distinct and equispaced node points x,, x4, ...,
Xp—1, Xpy Xpg1r -+ » Xp—1,Xp Suchthat x, = xo +7rh,vr=0,1,2,...,nand h is the step
length. The corresponding entries are given by yo = f(x0), ¥1 = f(X1), ), Yn = f(x).

Now, x,,_ — X, = xg + (n —1)h — (x9 + nh)

Our objective is to find a polynomial P(x) of degree less than or equal to n such that P(x)
replaces f(x) on the set of node points x, ,r = 0(1)n ie,

P(x,) =f(x), r=0(1N woorvveveircereenn, (2)
Let us take the form of P(x) as
P(x) = By + Bp_1(x = x3) + Bz (x — x) (X — Xp1) + Bp3(x — %) (x — xp_1)
(x—xp_2)+ - +By(x—x)(x —xp_1) - (X —X1) e (3)
The constants B;,(j = 0(1)n) are to be determined by using equation (2).
Putting x = x,, in equation (3) we get,
P(xn) = By
or,y, = B,
Putting x = x,,_; in equation (3) we get,
P(xp-1) = Bp + Bp-1(Xn-1 — %)
OF, Yp—1 = Yn + Bp_1(=h)
or, B,,_1 = %.
Putting x = x,,_,in equation (3) we get,

P(xp_2) = By + Bp_1(Xn—2 — X)) + Bp_2(Xn—2 — X)) (Xp—2 — Xn—1)



OF, Ynz = Y + 222 (=2h) + Byy(—2h) (—h)

A2yn—z
2h?

or, BTL—Z =
Putting x = x3in equation (3) we get,

P(xn—B) = Bn + Bn—l(xn—3 - xn) + Bn—Z(xn—3 - xn)(xn—3 - xn—l) + Bn—3(xn—3 - xn)(xn—3
- xn—l)(xn—3 - xn—z)

OF, Ynog = Y + (2222) (=3h) + 2222 (=3h)(=2h) + By_g(~3h) (—2h) (=h)

h 2h?
A3yn—3
or, Bns = s
. ATyn—r
Similarly, A,,_, = o

Substituting B,’ s value in (3) we have,

Ay, _4 Ay, _,
f(x) ~ P(x) = Ynt+ (x — xn) A + (x - xn)(x - xn—1)2|—hz + (x - xn)(x - xn—l)
A3y, _ A"y
(x — xn—z)g!—g: ot (0= x) (0 — 2y _g) e (x — xo)n!—hg

This formula is known as Newton’s Backward Interpolation Formula. It is used mainly in
computing f(x) when x lies in the end of the table.

Example: Find the value of f(0.5)using suitable interpolation formula from the following
table:

X 0 1 2 3 4 5
fx) |0 3 8 15 24 35
Ans:29.25

Lagrange’s Interpolation Formula

Let a function f(x) is known for (n + 1) distinct but not necessarily equispaced node points
Xy X1y vy Xp—1, Xpy Xpp1, -, Xp—1, Xpand the corresponding entries are given by y, = f(x,),
vy = f(x1), ..., ¥n = f(x,). Then the Laplace’s Interpolation formula is given by



(x = x1) (x — x3) . (x — xp) (x = x0) (x — x3) ... (Xx — x7)
(g = 21) (xg = x2) .. (g — x) Yo (o1 — x0) (g — x2) ... (3¢ — x)
(x = x0) (x = 1) oo (x — Xp_1)
(n — %0) Gt — %1) o Cn — X)) "

yl +

Lo(x) =

Example: Find the value of f(2)using Lagrange’s Interpolation from the following table:

x 0 1 3 4

fx) |-12 0 6 12

Newton’s Divided Difference Interpolation

Let a function £ (x) is known for (n + 1) distinct but not necessarily equispaced node points
Xy X1y w» Xp—1, Xpy Xpp1, - Xn—1, Xn @nd the corresponding entries are given by y, =
f(x0), y1 = f(x1), ..., ¥n = f(x,). Then the Newton’s divided difference Interpolation
formula is given by

f(x) = fxo) + (x — x0) f[x0, 1] + (x — x0) (x — x1) f[x0, X1, X2] + -
+ (= x0)(x = x1) . (0 = Xp—1) fx0, X1, o0 Xp—1] + Rpy1 (%)

Where R,, 1 (x) is the remainder term.

Example: Find the value of f(2)using Newton’s Divided Difference Interpolation formula

from the following table:

X -1 1 2 3

fx) |-21 15 |12 |3




Numerical Integration

Numerical integration is the study of how the numerical value of an integral can be found. Also
called quadrature, which refers to finding a square whose area is the same as the area under a
curve, it is one of the classical topics of numerical analysis. Of central interest is the process of
approximating a definite integral from values of the integrand when exact mathematical
integration is not available.

Trapezoidal Rule
Let! = [ f(x)dx

The simplest quadrature rule in wide use is the Trapezoidal rule where the integrand is
approximated by a linear polynomial. It is a two point formula ie, n (no. of interval)= 1.
Therefore there are only two functional values f(a) = y, = f(x,) and f(b) =y, = f(xy)
where b — a = h. Like many other methods, it has both a geometric and an analytic derivation.
The idea of the geometric derivation is to approximate the area under the curve y = f (x)from
X = atox = bby the area of the trapezoid bounded by the points  (a,0), (b,0), [a, f (a)],
and [b, f (b)].This gives

h

b h
I = | FGodx =31£@ + F@)] = 3 o + ]

This formula is known as Trapezoidal rule for numerical integration. The error is given by

Er = —?—Zf”(f)wherea <E< b.

h
= =5 -1—2y0 + 3]

Graphical Interpretation: In Trapezoidal rule the actual value of the integration is
approximated by the area of the trapezium shown in the following figure.



R :xul-l-ﬂx

Composite Trapezoidal Rule

If we divide the range of integration into n equal sub-intervals by (n + 1) points a =
X0, X1, X2, ., Xn = b Where x; = xy + ih (i = 0(1)n); then if Trapezoidal rule is applied to each
of the intervals [xq, x, + h], [xo + h,xo + 2h], ... ,[xo + n — 1h,x, + nh]then we get,

b
I =J- f(x)dx

Xg+tnh
=j f(x)dx
Xo
Xoth Xo+2h Xotnh
=j f(x)dx+j f(x)dx + +f f(x)dx
Xo X0+h Xo+n=1h

h h
=§[f(xo)+f(xo+h)]+§[f(x0+h)+f(x0+2h)]+‘”

+ g [F (o + = Th) + f(xo + nh)]

h -
= E[{f(xo) + f(xo + nh)} + 2{f (xo + h) + f(xo + 2h) + -+ f(xo + n — 1h)}]

h
= 5[(3/0 +y) + 271+ Y2+t yno1)]

NS

X [(Sum of first and last ordinates)+2 x (Sum of the all other ordinates)]

This formula is called Composite Trapezoidal rule for numerical integration. The error is given
by

h
EC === [o1+Ya— o +¥n-1)].

Graphical Interpretation: In Composite Trapezoidal rule the actual value of the integration is
approximated by the sum of the area of n trapeziums shown in the following figure.



X =xptHrAx
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Simpson’s Erd Rule

Let! = [ f(x)dx

Simpson’s 1/3 rule is an extension of Trapezoidal rule where the integrand is approximated by a
second order polynomial.lt is a three point formula ie, n (no. of interval)= 2. Therefore there are
only three functional values (a) = y, = f(x0) , y1 = f(x1) and f(b) =y, = f(x,) where

h = bz;a and x; = x, + ih (i = 0(1)n). The Simpson’s 1/3 Rule quadrature formula is given by
b h
Iy = | FOOdx = 317 G) + 4£Gr) + £ ()
a

h
=3 o +4y1 + 2]
The error occurs in this formula is given by

Es = —T—:f”’(g)wherea <E< b.

h
= _%D’ﬂ — 4y, + 6y, — 4y, + ys].

Graphical Interpretation: Simpson’s ird rule approximates the actual value of the integration
by the shaded area shown in the following figure.



a+b
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Composite Simpson’s ird Rule

If we divide the range of integration into n = 2m (even) equal sub-intervals by (n + 1) points
a = Xg,Xq,X3, ..., Xn, = b Where x; = x, + ih (i = 0(1)n); then if Simpson’s grd rule is applied

to each of the intervals [xq, xo + 2h], [xo + 2h,xy + 4h], ... ,[xy + n — 2h, x, + nh]then we
get,

b
3 =j f(x)dx

a

Xg+nh
- [ reoax
Xo
Xo+2h Xo+4h Xo+nh
= f f(x)dx + f(x)dx+~~~+f f(x)dx
Xo Xo+h Xo+n—2h

= g[f(xo) +4f(xo+ h) + f(xy + 2h)] +§[f(x0 + 2h) + 4f(xy + 3h) + f(xy + 4h)] + -

+§[f(x0 +n—2h) +4f(xy +n—1h) + f(x, + nh)]

h
= 5[(3}0 +y) + A4 Y3+t Yno1) 22 FYa o+ Yn2)]

= % X [(Sum of first and last ordinates)+4 x (Sum of the all odd ordinates)+2(Sum of all even
ordinates)]

This formula is called Composite Simpson’s %rd rule for numerical integration. The error is
given by



h
EZ == y-1+¥s =400 +34) + 7(y1 +¥3) — 8y3].

Graphical Interpretation: Composite Simpson’s grd rule approximates the actual value of the
integration by the shaded (blue) region shown in the following figure.

iy

Degree of Precision: A quadrature formula is said to have degree of precision k(> 0), if itis
exact, ie, the error is zero for any arbitrary polynomial of degree less or equal to k, but there is at
least one polynomial of degree (k + 1) for which it is not exact.

The degree of precision of Trapezoidal rule= 1.

The degree of precision of Simpson’s érd rule= 3.
Problem1: Evaluate f37x2logxdx taking n = 10 using Trapezoidal rule.

Problem2: Evaluate folxze"dx taking n = 12using Simpson’s grd rule.



System of linear algebraic equations.

A general system of linear equations with n equations and n variables can be written in the form

allxl + alzxz + a13x3 + -+ allnxn - bl

alel + azzxz + a23X3 + ee + azlnxn = bz

a31x1 + a32x2 + a33X3 + ee + aglnxn = b3 - - _(1)
(p X1+ ApoXy + Ap3x3 + 0 + appxy = by

Where the coefficients a;; (i,j = 1,2,3,-+-,n) and b;(i = 1,2,3,---,n) are given constants.

This system of equations can be written inmatrix notation as AX = b, where

a1 A1z QA3 QAqp b,
A1 Qzz QGz3 - O b,
A= [aif]nxn =|az; Qzz azz ‘-  A3p| isthe coefficient matrix, b = | bs |is called right hand
an1 QApz Qp3z - Qpp b,
X1
X2

side vector which are known and X = | X3 |is called the solution vector to be determined.
‘x‘l’l

Note: (i) If all the b; = 0, (i = 1,2,3,-+-,n) then the system is called homogeneous otherwise the
system is non-homogeneous.

(i) If the diagonal elements of the coefficient matrix A satisfies the conditions
n

lag| > Z
Jj=1,i#j

Gauss elimination method for system:

i =1,2,3,---,n then the system will be called strictly diagonally dominant.

(i) It’s a direct method of finding the solutions.
(i) To apply this method we shall assume a square system, that is, number of equations
must be equal to number of variables.

Let us consider the following system of n-equation in n- variables as

aVx +aDx, +aPxs + o+ afrz 1 Xn—1 + a(l) = p™ )
agl)xl + ag)xz + a%)x3 + -+ aglr)l 1Xn-1+ a(l) = b(l)
1 1 1 1 1
agl)xl + agz)xz + agg)x3 + -+ agr)l 1xn 1+ a( )xn = b( ) b ———(2)
1 1
( ) 11%1 +a( ) 12%2 +a7(1)13x3 + - +a,(1)1n 1Xn— 1+a,(1)1n = b( )
1 1
flixl + a,%%xz + a;‘§x3 + -+ afﬂzL 1Xn-1+ aEl ,)lxn = b,(l )




Where a¥ (i,j=1,23,:-,n) and bi(l), (i =1,2,3,::+,n) are prescribed constants. Let agll) # 0. Now

ij
multiplying the first equation successively by

e

(= mn—1,1)' - ﬁ (= my 1) and adding
11

)

n—1,1

a§11) a3, ai11
Gy (=my),— D) (=m31),— D) (=myq), -, —
a a a
11 11 11

respectively with 2nd ;3rd 4th yp to nth equation of the system we get

(1) a

€]
a11

€] €h) ® €5 @, _ @
;X +ay X, tagjsxz+ ot a1 Xp1 +ay X, = by
() () () 2., _ ;@
Ayy Xy + Ay X3+ o+ Ay 1 Xp1 + a5 %, = by
() () ) 2., _ ;@
Azp X2 + 333+ =+ Azy 1Xn1 +az;%0 =Dy r————03)
(2) 2 (2) (2) _ (@
AplqX2 +ap g 3x3+ oty X+ ap”, Xy = b,”;
@) ®) ) @, _ @
ApoX2 + QpaXz+ ot ap, 1 Xp 1+ aQyaXy = b, )
4P = O el @ o _aed
22 = Q33 @ 3 = dy3 @
aiq aiq
(), (@) @, (@)
2 1 az,-a 2 1 az;-a
Where, agz) = agz) - %,ag; = agg) —&Ls
all all
@ _ () _ a0y @) _ (1) _ Gnyaly
Ap2 = 02—~ @ A3 =0z~ @ '
a11 all

Etc.

It is clear from the system (3) that except the first equation, the rest (n — 1)

Equations are free from the unknown x;. Again assuming agzz) # 0, multiplying second equation of
the system (3) successively by

() (2) () ()
a _ a _ a —12 (__ a 2 (_ . .
—5(=mzy), ——G(=Emy), ", ——5 (=mp-1,), — —& (= my,,) and adding respectively to 3rd,
a a a a
22 22 22 22

4t ., (n — 1)th and nth equation of the system (3) we get,

1 1 1 1 1 1
agl)xl + agz)xz + a§3)x3 + -4 air)L_lxn_l + ag,yzxn = b§ )
2 2 2 2 2
agz)xz + a§3)x3 + -4 ag,Y)l—lxn—l + aglr)an = bg )
3 3 3 3
a§3)x3 + -+ aglg_lxn_l + agﬂzxn = bg ) b —— —(4)
3 3 3 3
a;—)1,3x3 + -t a‘El—)l,Tl—lxn_l + agl—)l,nxn = br(L—)1
3 3 3 3
a,(l_g),x3 + 4+ aﬁl',)l_lxn_l + a1(1,7)1xn = b,g ) )

Here also we observe that the 3rd, 4th up to nth equations of the system (4) are free from unknowns
X1, X3.



Repeating the same process of elimination of the unknowns, lastly we get a system of equations
which is equivalent to the system (2) as:

agl)xl + agz)xz + a( )x + -+ ag_lrz 1Xn-1+ a( )y, = b(l)
agz)xz + agzg)xg + -+ agL 1Xn-1+ a( )xn = b(z)
(3) 3 (3) (3
ay;x3+ -+a Xp-1+ a3 =D
B e s — — — —(5)
-1 1 1
a7(1n—1,1’)l 1Xn-1+ a7(1n 1r)1 b(n )
Qponn = by
The non-zero (by assumption) co-efficients agll), agzz)’ aggg), . (") » of the above set of equations are

known as pivots and the corresponding equations are known as plvotal equations.

Now we can get easily the solution of system of equations (5) as follows. First we find x,, from the
n-th equation, then x,,_; from the (n — 1)-th equation substituting the value of x,, and then
successively we get all he value of the unknowns x, x,, x3, -+, x,,. This process is known as back
substitution.

Gauss Jacobi’s Iteration Method:
Let us consider the following system of linear equations as follows

allxl + alzxz + a13x3 + -+ allnxn = bl
a21X1 + azzxz + a23X3 + -+ az'nxn = b2
azyX1 + AzpXz + AzzXz + 0+ Azpxy = by —— — —(6)

(n1X1 + ApoX; + ap3xz + - + appxy = by
Where the coefficients a;; (i,j = 1,2,3,---,n) and b;(i = 1,2,3,---,n) are given constants.

Note: (i) Gauss Jacobi’s method of iteration is an iterative method or indirect method, it is based on
finding the successive better approximations of the unknowns of the system of equations, using
iteration formula.

(ii)The convergence of iteration depends on the sufficient conditions that the system must be
diagonally dominant, that is the coefficient matrix should be diagonally dominant that is

n
|l ZZ
j=1,i#j

(iii)In this method also we shall find the solution of a square system.

i=1,23:,n

[teration formula:

The system (6) is diagonally dominant (a;; # 0,i = 1,2,3,-+-,n) so it can be written as



1

X1 = T [bl — Q12X — A13X3 — A14X4 — "~ A1 p-1Xpn—1 — al,nxn]

11
Xy = T [bz — Ap1Xq — Ap3X3 — Ap4X4 — = — Ay p—1Xp—1 — az,nxn]

22

-——-

X3 = a [bs —A31Xq — AzpXp — U34X4 — = — A3 p—1Xp-1 — a3,nxn]

33
Xn = a [bn —Qp1Xq1 — Au2Xy — Ap3X3 — "~ App-2Xp-2 — an,n—lxn—l]

nn

In this method, the iterations are generated by formulae known as iteration formulae as follows:

k+1 k k k k k
x£ ) = T b, — a12X§ ) - a13x3(, ) - a14x£ . a1,n—1xr(l_)1 - al,nxT(l )]
11+
1 _
k+1 k k k k k
x§ ) = P b, — a21x§ ) - azaxé ) - a24xi ) az,n—1xr(l—)1 - aZ,nxr(L )]
22 ¢
1, ———-®
k+1 k k k k k
X§ )= _a33 _b3 - a31x§ ) — a32x£ ) — a34x£ ) a3,n—1x1(1_)1 - a3,nxr(t )]
1
k+1 k k k k k
xT(l )= a, ., [bn - an,1x£ ) an,zxg ) an,3x§ e an.n—zxr(t—)z - an.n-lxg—)l
nn

Where initial guess xi(o), (i =1,2,3,::,n) being taken arbitrarily.
Here also the number of iterations krequired depends up on the desired degree of accuracy.

(s+1) _

If an error & be tolerated in s th iteration, then the test for convergence is given by |x; xi| <

g, fork = s.
Gauss-Seidel Iteration Method:

This method is also an indirect method for finding solution of a system of linear equations. This
method is almost identical with Gauss Jacobi’s method, except in considering the iteration formula.
The sufficient condition for convergence of Gauss Seidel method is that the system of equations
must be strictly diagonally dominant. That is the coefficient matrix A = [aij]nxn be such that

n
la;| > Z laij|, i=123,,n
j=1,i#j

We consider a system of strictly diagonally dominant equations as:

a11x1 + a12x2 + a13x3 + -+ al‘nxn = bl
a21x1 + a22x2 + a23X3 + e+ azlnxn = bz
Az1X1 + AzpXy + AzzXz + o+ Azpxy = by = ———(9)

(p X1+ ApoXy + Ap3xz + 0 + appXy = by

As the system is diagonally dominant therefore a;; # 0, (i = 1,2,3,-+-,n). Like Gauss Jacobi’s
method, the system of equation can be written in the form



1

X1 = o [b1 — Q12X — A13X3 — A14X4 — "~ A1 p-1Xn-1 — al,nxn]
11
1
Xy = P [bz —Ap1X1 — Ap3X3 — QAp4X4 — " — Ay pn-1Xp—1 — az,nxn]
22
X3 =—|bgy — A31X] — Q32X — A34X4 — *** — Q31— 1Xp—1 — Az X
3 s [ 3 31X1 32X2 34%X4 3n-1%Xn-1 3n n] s — (10)
1
Xpn-1=—— [bn—l —0Qp-11X1 — Ap-12X2 — Ap_13X3 — *** —Ap_1pn-2Xn-—2 — an—l,nxn]
An-1,n-1
1
Xn = [bn —Ap1X1 — Ap2Xy — Ap3X3 — "~ Apn-—2Xp-2 — an,n—lxn—l]
aTl,TL
. . ey 0 0 0 0 e ags
Now after considering an initial guess, x; = xf ),x2 = xg ),x3 = xg ), Xy = x,(l ) (usually the initial

values of the unknowns are taken to be xio =0,i =1,2,3,:-,n), The successive iteration scheme
called iteration formula of Gauss-Seidel method , are as follows:

ki) _ L (K (k) (k) (k) 0
X1 = . by — @12X; " — Qi3X3  — QuaXy — = Qpe1Xp g — AinXp
11 -
k+1) _ Ly (k+1) ) x) 0 03
X = by — az1x; T Qp3X3 " = Q24X " — '~ App-1Xp1 — Xy
22
k) _ L (k+1) (k+1) 105 105 105
X3 i bs — az;x; — Q32X; T Q34Xy " — T A3p-1Xp g — A3nXy
33
k+1) _ 1 (k+1) (k+1) (k+1) (k+1) (k+1)
Xn T e bp — an,1x; — Qn2X; — Qp,3X3 — T Opn-2Xp—2 " T Opn-1Xp—q )
nn

- (11
the number of iterations krequired depends up on the desired degree of accuracy.

(s+1) _
i

N

If an error g be tolerated in s th iteration, then the test for convergence is given by |x x| <

g, fork = s.
Matrix Inversion Method:

Let us consider a system of n-linear equations with n-unknown as :

AX=b—-——-——-—-12)
where
aj; A1z Qi3 Ain by X1
az1 Qzp Ap3 an b, X
A=la;]  =|91 as2 as3 azn|,b =|bs| and X =|X3
J nxn e 3 cee
An1 Qn2 Qp3 Ann bn Xn

Multiplying the system of equations (12) by the inverse of the matrix 4, A~ we get X = A~ b,
provided A~! exists that is |A| # 0, that is A4 is non singular Matrix.



__Adj(4)

In general A~!is defined as A™1 = .
Det(A)

But finding the inverse as well as solution of the system of equation by this method is a tremendous
task. Thus, to find in easier method we have Gauss Jordan’s Matrix Inversion method.

Gauss Jordan’s Matrix Inversion method.
In this method we shall find the inverse of a matrix without calculating the determinant.

In this method we shall write the augmented matrix of a quare matrix A by writing a unit matrix I of
same order as that of 4 side by side. Then we shall transfer the matrix A to a unit matrix by number
of steps equal to order of the matrix and then the matrix so obtained to which the unit matrix is
transferred is the inverse of the matrix A.

Without the loss of generality let us consider a 4 X 4 matrix A of the following form:
A= , |[Al#0
4

Now the Augmented matrix of A is formed by an unit matrix I as

a1 Q12 Q13 Q14
[4: 1]~ Az1 Gz Q23 Q24
Q31 A3z 0433 A3y
Qg1 Q42 Q43 QAyq

o O O
oo RO
oSO R OO
_ O O O

Now dividing the first row (pivot row) by a,;(pivot element) then multiplying successively by
a1, 31, A41 and subtracting from 2nd, 3rd and 4t row we get

1 a'yy ai; a3 aig 0 0 O
- 0 Ay1 Qpp Q3 Opg 100
! ! ! !
0 az; Qzp; Q33 Q3 0 1 O
! ! ! !
0 Qg1 QAgp Qg3 Qgg 0 0 1
Where
y iz, Q13 . Qig 1
a1 = yA12 = ,A13 = yA14 = —
11 11 11 aiq
' a2z, aiz , aig  , 0
Q1 = Az — A1 —,0pp = Qz3 — Q1 ——,0p3 =04 — 031,04 = U — A1 —
Qaiq aiq Qaiq agq
' a2, 13, aig  , 0
a31 = Az — Q31 ——,03 =033 — Q317 —,033 =034 — 031,034 = U — a3 —
Qaiq aiq aiq agq
' a2, 13, aig  , 0
Qg1 = Qg — Q41— Qyp = Q43 — Q41— Qg3 = Qyq — Qg1 —,024 = U — Ay —
Qaiq aiq aiq agq



Then we divide the second row by a}; and then multiplying successively by ai,, a3,, a;; and

subtracting from 1st 3rd and 4th row we get

n n n n
10 A1 A1z Q13 Qg4 0 0
|01 az1 Gz2 Q3 Az 00
00 ag; asr az; az 10
0 0 ajy Qar Q43 A4y 0 1
Where,
! ! !
"no_ ;o Q22 a 23 ’ 24 0—ad 1
a1y =a'p—ay——,a, =ad 3 —a'y1——,ai3=a'1,— a1 ——,al, = Q11—
21 a'y; 21 21
! ! !
wo_ Q22 ,, Q23 , Ay 1
A1 = 7 Ay = 57,03 = —7—,0A4 = —
ari 21 ani 21
A A !
"o_ o0 _ az —a Clz r_ a 24 "—0—a
az; = 0asg a'3y——,az; = a'3 a'3y——,a33 =a'3 A31—7 034 = a31—
21 21 21 asy;
A A !
no_ o0 Q22 no_ o a3 — o a 24 0—da 1_
A1 =gy — 'y, a4, =a'y3—a'yy——,a)3 =a'yy —a'yy——, a4y = A 41—
asz; a'y a'y asy;
Again dividing the thirs row by aj;, then multiplying the 3rd,row by a’’1;, a3;, ay; successively and
then subtracting from 1st 2nd and 4th row we get,
10 0 ¢ af af af a i 0
o1 o e e e oanos o0
00 1 ¢ aff af o afi i 0
nr n nr nr
0 0 O Qg1 Qgp Qg3 Qg 1
14 n n
a '3; a 33 a 34
nr 14 nro__ 14 n nr nr n
a1 =a";; —ad"yy——,al =ad" ;3 —ad" 15—, a3 = a1y — a1 12=0—0a"1;—
31 31 31 31
n 14 14
a 3; a 3s a 34 1
nr 14 nro__ n 144 nr nr 14
ay1 =a'y—a'y 5 a; = a3 —a a3 = a a5, a0, = 0—ay ——
31 31 31 31
14 14 14
" 32 gy 33y o_ 34 gy
31— i 2%32 — g Y33 — g1 U334 —
31 31 a3 31
n n 14
a 32 a 33 a 34 1
nr 144 nr 144 nr n nr 14
ayy ="y —a' o ay =ad 3 —ad a3 =y — a5, al, = 0—ay ——
a 31 a3 a3 a3
Finally We divide the forth row by ay;, then multiplying successively by af’;, a5, a5; and then

subtracting from 1st, 2nd, 3rd row, we get



nrr

nrr

01 0 0 7 ayy
“lo o1 0 me gy
0 0 0 1 ay:?  ayy
Where
nr n
a 42 a 43
nrro__ nr nr nrro__ nr nr
11 =4 12— QA 1157 > Q12 =A@ 13— A 11757
41 41
_ 127
=0—-a 11 " 7rr
41
nr n
a 42 a 43
rnrro__ nr nr nrro__ nr s
A1 = A 22— QA 217 A2 =A@ 23 =A@ 21 77
a 4 a 4
_ "
=0—-a 21 1
41
nr nr
e e a 42 .y — a 43
31 =A@ 32 —Q 31— Q32 =4 33— 0 3175
41 41
_ 127
=0—-a 31 77
41
auu _arly, e Al e Ay gy 1
41 arrrg,’ 42 arrry,’ 43 arrr,,’ 44 arnry,
Thus the required matrix,
nrr nrr nrr nrr
ai; Q12 413 Ay
nrr nrr nrr nrr
Qz1 Q22 A3 Q4
nrr mnrr mnrr mnrr
az; Qzz O3z Q34
nrr mnrr mnrr mnrr
Qg1 Qg Qa3 Qg
[s the required Inverse of the matrix
aj; Q12 di3
A= Qz1 Az A3
azp Qzpz Q4szs
Ag1 Q4 Qu3

Matrix Factorization or LU Factorization Method:

"
13
"
23
"
33

nrr

QAy3

nrr

14
mnrr
QAz4
mnrr
QA3z4
mnrr
44
nr
meeo a 44 e
a 14— A 11—, Q14
41
n
n _ n a 44 nrr
a 24 21 424
41
nr
neeo a a4
A 34— 317 Q34
41

Matrix factorization method is a powerful and minimum labour method to compute the unknowns
in a system of linear equations. In this method we shall express the coefficient matrix of a system of
linear equation as product to two square matrix of same order, one is upper triangular and another

is lower triangular matrix.

Let us consider a system of linear equation be of the form

AX=b——(1)

where A4 is the coefficient matrix, b is the column vector with known constants and the column

vector with unknowns is X.



Let U and L be upper and lower triangular matrices such that

A=LU—-—--(2).
Therefore we have

LUX =b——-(3).
Let us set

UX=Y---(014)

where Y is again column vector of unknows.
Now the system reduces to
LY =b———-(5)
Now by forward substitution we can solve equation (5) for Y.
Then by back substitution we can solve equation (4) for X.
For example let us consider a system of 3 equations with 3 unknowns in the following form:
a11X1 + Q12X + Ay3x3 = by
Az1X1 + Q2% + Az3X3 = bz} —-——(6)
az1X1 + azpX; + azzxz = b3

Here the coefficient matrix A4 is given by

a1 Q12 Q13
A= |01 Az az3
azy Qzz dazs
X1 bl
And the column vector of unknowns X = xz], and the column vector of constant b = lbzl
X3 bs

So the system is AX = b

Now let us consider the lower triangular matrix L and upper triangular matrix U of order 3 X 3 of
the form

0 1 uy

I, 0 0
L= [121 l22 0 ] and U =
0 0 1

131 l32 l33

1 uyg, u13]

So,if A = LU, then

l11 li1uq2 l11u43 a1 Q12 4i3
LU =l1 laugp + 1o lLa1uyz + lhsuas =[0z1 Q2 Qaz3|———(8)
31 l31ugp + 13y l3qUp3 + [35up3 + 133 31 a3z 0ass



From (8) we can easily find the values of [;; and u;; for i,j = 1,2,3.

Now the given system can be written as

LUX=b——-(9)
Let us set
UX =Y ———(10)
Y1
where Y = |Y2|, y1,¥2, 3 are unknowns.
Y3

Now the system reduces to

LY =b————(11)
Thatis
liy O 0 V1 b,
L1 bz 0 |x(¥z|=|b;
l31 I3 33 Y3 bs
That is
l11y1 =by
l1y1 + 132 =by,————(12)
l31y1 + 131y, + 33y, = b3

By forward substitution we can easily solve the system (12) for y;, V5, V3.

Now equation (10) gives

1 ulz u13 xl yl
0 1 uy|X|[X2|=1[)2
0 0 1 X3 V3
That is
X1+ UgpXp + Ug3X3 =Y,
Xz + UpzX3 =Y — — — (13)
X3 =Y3

Now by back substitution we can find the unknowns x4, x,, x5 from equation (13).



Numerical Solution of Ordinary Differential Equations:

Let us consider a 1st order ordinary differential equation as initial value problem as follows:

dy_

dx - f(x'Y);}’(xo) =Yo——— _(1)

Our objective is to solve the given initial value problem. If f (x, ¥) has only a very simple form, then
we can find the analytical solution for the given differential equations. But there are enormous
collection of problems which arise in real life situation (engineering, science, technology or
industry) which has complicated form or the solution of the differential equation is very laborious.
In these cases, the numerical methods give at least an approximate value of y at some prescribed
value of x.

Euler Method:

It's a simple and single step but crude numerical method for solving an ordinary initial value
differential equation, where the solution will be obtained as a set of tabulated values of variables x
and y.

Let us consider the a first order 1st degree differential equation as (1). Let us suppose that we have
to find the approximate value of y say y,, when x = x,, . We divide the range [x,, x;,| into n-equal
sub intervals by the points xg, x1, X2, ***, Xp_1, Xp) Xp41, ***, Xn, Where x,. = xo +rh, (r = 1,2,3,-+-,n)
and h = x,. — x,._;=step length.

Assuming f(x,y) = f(x._1,¥r—1) in (x,_; < x < x,) and integrating (1) in the range [x,_;, x,.] we
get the Euler iteration formula as:

Lmody = [ floy)dx,
Xr
or,yr =yrq + [T floy)dx,———— - )

or, yr = Yr_1 t+ f(xr—lryr—l) f;:_l dx = Yr-1t h f(xr—ltyr—l)r - T (3)

Using formula (3) at the mesh point x,.(r = 1,2,3, -+, n), we get, the successive approximations to y
as follows:

Y1 = Yo + hf(x0,¥0) =y(x1)
Y2 =y1 +hf(x1, 1) =y(x;)

¥z =2 + hf (x2,¥2) =y(3) (————@)

Yo = Yn-1+ Af (o1, ¥n-1) = y(xn)
Note: This method depends the step length h and smaller the length h yield a better approximate
result. So the method is too tedious to get result up to desired degree of accuracy.



Modified Euler Method:

This method gives us a rapid and moderately accurate result upto desired degree of accuracy.

Starting with initial value y(x,) =y, an approximate value of yr(o)can be computed by Euler
formula (3).

Xr
yr(O) =Vr-1 + f f(x:y)dx =YVr-1 + hf(xr—lvyr—l) - = _(5)

Xr—1
Where f(x,y)is replaced by f(x,_1, Vr—1) in [x,_1 < x < x,.].

Instead of considering f(x,y) = f(x,_1,¥-_1), if we use the Trapezoidal rule in the range
[xr_1 < x < x|, we get,

h
W = yroa 45 [f@ron, yro0) + f (3] = = = —(6)

No replacing f (x,, y;-) by its moderate approximate value f (xr, yr(o)) at the end point of the interval

[xr_1, %], we get, the first approximations to y, = y(x,) as

yrgl) =Vr-1 +g [f(xr—lv YT—l) +f (Xr; yrg()))] -0 _(7)

In this manner, considering successive approximations to y,., we get the iteration formula as

h _
W = Yooa 45 [fGronye-) + f (0" 70)| = = = =(®)
Where yr(") is the n-th approximation to y,.. Thus y,,(n) =y,
Note: In any two consecutive approximation of y,., say, yr(k_l) and yr(k) if yr(k)—yr(k_l) < g where ¢
is the error of precession, then we conclude yr(k_l) =~ yr(k) = Y.

Taylor’s Series Method:

Its also a simple and useful numerical method for solving an ordinary differential equation given in
equation

: dy
y'() == f0y),y(x) =yo === —(9)
Where f(x,y) is simple in nature and is sufficiently differentiable with respect to x and y.

Taking the step length h, sufficiently small, the exact solution of (9), y(x) can be expanded by
Taylor’s series about x as:



2 3 4

1(0 h' 17 h' nr h' [
() = y(xo + 1) = y(xo) + hy' @ + 2y 00 4 oy 4 oy () + - = — = =(10)

The values of the derivatives required in the equation (10) can be computed by taking successive
differentiations of the implicit function f (x, y)as follows:

y' ()= f(x,y)

') =fi+ ¥ ()

V") = fex + fey- Y ) + {fay + fry ¥ )}y () + £y ()
= fix + foy-y,(x) + fyy{y’(x)}z + fy-y”(x) )

- —(11)

(Assuming fxy = fyx)
So on and then substituting x, for x and the corresponding values of derivatives for x.

Note: To get the solution y(x) up to a desired degree of accuracy y(x,,,), (r = 1,2,3,--+) through
the sequence of values of x, x,, = x,_; + h, (r = 1,2,3,-:+), we compute y(x,) for x,, = x,._; + h first
and the values of the derivative from (11) for x,., then we compute y(x,,1) fro x,,1 = x, + h.

R-K/Runge-Kutta Method:
Second Order Runge Kutta Method:

Second order Runge Kutta method is based on the Taylor’s Series Method. To derive the
computational formula, Let us consider a differential equation as

: dy
Y/ = = = (5, 7),y(x0) = ¥o — = = =(12)
Now taking the derivatives of y we get

YV'=fet Yy =ht 1

y,” = fex +fxy-y, + (fx +fy-y,)fy +f[fyx + fyy-y’]
:fxx+fxy-f+fx-fy+fy2-f+f-fyx +fyy-f2
= fox +2f fay + fo by H B F + fyy f?

———13)

Again, by Taylor’s Series, we have

hZ

y1 =y(xo +h) = y(x) + hy'(xy) + ﬁ}’”(xo) + 0(h?)
hZ

=)o +h(®)o + z(}’”)o + 0(h?)

h2
=Y+ h(f)o +?[fx +f-fy]0 + 0(h3)
h2
= o +h(Fo + 57| Fdo + (Do ()] + 0% == = (19)

Where the scripts ‘0’ denotes the values of the functions at (x, y,)-



In this method, The solution of (12) is taken, with the step length h (small) as
y1 =y +h) =yo+k————(15)

k = ak, + Bk,
Where ky = h f(x,¥0) = h(f)o - ——(16)
k, = h [f(xy + mh,y, + nk,)]

Where @, 8, m, n are constants and are evaluated such that (16) agrees Taylor’s Series (14) upto
including term containing h?.

Again from (16) we have
ko = |f (o yo) + {mhf +nkafy} ]

=k [(Po + mh(Fo + b (o (£), ]
= k(P + 2 {m(£o + 1 (Do- (5),}

Substituting in (15) we have

y1 = y(xo +h) = yo + @ h(Fg + B-h(Fo + h2B {m(f)o + 7 (o ()}
= Yo + (@ + BA(No + W2 {mB(f)e + 1 B(No. ()} —— = — = (17)

Now comparing (17) with (14) we get
tg=1 1 1
a+p= ,mﬁ—z,nﬁ—z,
Som=n
Now takingm =n=1wegeta =f = %

Thus the computational formulafor Runge-Kutta method of order 2 reduces to

yi=yxo+h)=y,+k
1
k=§(k1+k2)

ky = hf(x0,¥0)
ky = hf(xo+h,yo + k)

———@18)

The error in this formula is 0 (h?).

Fourth Order Runge Kutta Method:

The computational formula for fourth order Runge-Kutta method can be derived in similar manner
as in second order by considering terms up to h*, as follows:



y1 =Y +h) =y, +k
k:%(k1+2k2+2k3+k4)
ky = h f(x0,¥0)

ks :hf(x0+g,y0+%) (~- a9

ks =h ( o2 +k2>
3 =hf|xo 2,3’0 2

ky=hf(xo+hyo+ks)

Where the error is 0(h°).
Milne’s Predictor-Corrector Method:

It is a multi step method , that is to compute y,,,, a knowledge of preceding values of y and y' is
essentially required. These values of y to be computed by any one of the self starting method like
Taylor’s series method, Euler Method, Runge-Kutta Method,W.E. Milne uses two types of
quadrature formula (i) open type formula to derive the Predictor formula and (ii) Closed-type
quadrature formula to derive corrector formula.

The Predictor Formula is given by: y,,,1 = y,_3 + 43—h [2yp—2 = Y1+ 2 5]

The corrector Formula is given by: y,, .1 = y,,_1 + g (V-1 + 4y + Viiq]

Computational Procedure:
Step I: Compute y,,_,, ¥y—1, ¥y by the given differential equation y,. = f(x,., y;.).
Step II: Compute ¥,,, 1 by the predictor formula

Step III: Compute y,,,,by the given differential equation, by using the predicted value ¥,,,; obtained
in Step IL.

Step IV: Using Predicted value y,,,;obtained in Step III, compute y,,,, by the corrector formula.

Step V: Compute D,,,; = corrected value (y,41) — Predicted value (y,,;1).If D41 is very small
then proceed for the next interval and D,,,, is not sufficiently small, then reduce, the value of h by
taking its half etc.



Solution of Equations

Algebraic and Transcendental Equations

f(x) = 0 is called an algebraic equation if the corresponding f (x) is a polynomial. An example
is7x? + 2x + 1 = 0. f(x) is called transcendental equation if the f (x) contains trigopnometric, or
exponential or logarithmic functions Examples of transcendental equations are sin X — x =0

There are two types of methods available to find the roots of algebraic and transcendental
equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of steps.
We assume here that there are no round off errors. Direct methods determine all the roots at the
same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of
successive approximations. The general procedure is to start with one or more initial
approximation to the root and obtain a sequence of iterates k x which in the limit converges to
the actual or true solution to the root. Indirect or iterative methods determine one or two roots at
a time. The indirect or iterative methods are further divided into two categories: bracketing and
open methods. The bracketing methods require the limits between which the root lies, whereas
the open methods require the initial estimation of the solution. Bisection and False position
methods are two known examples of the bracketing methods. Among the open methods, the
Newton-Raphson is most commonly used. The most popular method for solving a non-linear
equation is the Newton-Raphson method and this method has a high rate of convergence to a
solution.

Methods such as the bisection method and the false position method of finding roots of a
nonlinear equation f(x) = 0 require bracketing of the root by two guesses. Such methods are
called bracketing methods. These methods are always convergent since they are based on
reducing the interval between the two guesses so as to zero in on the root of the equation.

In the Newton-Raphson method, the root is not bracketed. In fact, only one initial guess
of the root is needed to get the iterative process started to find the root of an equation. The
method hence falls in the category of open methods. Convergence in open methods is not
guaranteed but if the method does converge, it does so much faster than the bracketing methods.

What is the bisection method and what is it based on?

One of the first numerical methods developed to find the root of a nonlinear equation f(x) =0
was the bisection method (also called binary-search method). The method is based on the
following theorem.

Theorem

An equation f (x) =0, where f(x) is a real continuous function, has at least one root between

X, and x, if f(x,)f(x,) <0 (See Figure 1).



Note that if f(x,)f(x,) >0, there may or may not be any root between x, and x,
(Figures 2 and 3). If f(x,)f(x,) <0, then there may be more than one root between X, and x,
(Figure 4).

f(x)

Xe

> X
Xu

Figure 1 At least one root exists between the two points if the function is real, continuous,
and changes sign.

f(x)

[ x \/ «x

Figure 2 If the function f(x) does not change sign between the two points, roots of the
equation f (x) =0 may still exist between the two points.

X

fx) fx)

/\ / * X“/
L L > X —F—> X
/ Xe Xy \/ / \/
Figure 3 If the function f(x) does not change sign between two points, there may not be any
roots for the equation f(x) =0 between the two points.

AR VAR e

Figure 4 If the function f(x) changes sign between the two points, more than one root for the
equation f(x) = 0 may exist between the two points.



Since the method is based on finding the root between two points, the method falls under
the category of bracketing methods.
Since the root is bracketed between two points, X, and X, , one can find the mid-point,

X, between x, and x,. This gives us two new intervals

1. x,and x,,and
x;n and x, .
Is the root now between X, and x,, or between x, and x,? Well, one can find the sign of
f(x,)f(x,),andif f(x,)f(x,) <0 then the new bracket is between x, and x,, otherwise, it is
between x,, and x,. So, you can see that you are literally halving the interval. As one repeats
this process, the width of the interval [,,x, becomes smaller and smaller, and you can zero in
to the root of the equation f (x) =0. The algorithm for the bisection method is given as follows.

Algorithm for the bisection method
The steps to apply the bisection method to find the root of the equation f (x) =0 are

1. Choose x, and x, as two guesses for the root such that f (x,) f (x,) <0, or in other words, f(x)
changes sign between x, and X, .
2. Estimate the root, x,, of the equation f(x) =0 as the mid-point between x, and x, as
X, X,
"2

3. Now check the following
a) If f(x,)f(x,)<0,then the root lies between x, and x,; then x, =X, and x, = X,,.
b) If f(x,)f(x,)>0,then the root lies between x, and x,; then x, = x,, and x, = X
c) If f(x,)f(x,)=0;thentherootis x,. Stop the algorithm if this is true.
4. Find the new estimate of the root

X, + X,

"2

5. Repeat the process until the difference of the new estimated root and the previous root is negligible.

u"

Advantages of Bisection Method
a) The bisection method is always convergent. Since the method brackets the root, the method is
guaranteed to converge.
b) As iterations are conducted, the interval gets halved. So one can guarantee the decrease in the
error in the solution of the equation.

Drawbacks of Bisection Method
a) The convergence of bisection method is slow as it is simply based on halving the interval.
b) If one of the initial guesses is closer to the root, it will take larger number of iterations to reach
the root.
¢) If a function f(x) is such that it just touches the x-axis (Figure 3.8) such as f (x) = x* =0

it will be unable to find the lower guess, x,, and upper guess, X,, such that f(x,)f(x,) <0



False position method

The false position method uses this property:
A straight line joins f(x;) and f(x,). The intersection of this line with the x-axis represents an

improvement estimate of the root. This new root can be computed as:
f ((I —~— f ((u ~
X, =X X —X,

=X =X, — %'_X”: This is called the false-position formula
f ((I vy f ((u -
f(x) ~ A

Then, x; replaces the(initial guess for which the function value has the same sign as f(x;)

Figure 5. False-position method.

Although, the false position method is an improvement of the bisection method. In some cases,
the bisection method will converge faster and yields to better results (see Figure.5).

>

f(x) 4

L -

Figure 6. Slow convergence of the false-position method.




Newton-Raphson method

Newton-Raphson method is based on the principle that if the initial guess of the root of f(x)=0 is
at x;, then if one draws the tangent to the curve at f(x;), the point X1 where the tangent crosses
the x-axis is an improved estimate of the root (Figure 3.12).

Using the definition of the slope of a function, at x = x;

)0 _  _, . 1)

fl) == Xi = Xiy e f'(x)

This equation is called the Newton-Raphson formula for solving nonlinear equations of the form
f ((} 0So starting with an initial guess, x;, one can find the next guess, Xi+1, by using the above
equation. One can repeat this process until one finds the root within a desirable tolerance.

Algorithm
The steps to apply using Newton-Raphson method to find the root of an equation f(x) = 0 are

1. Evaluate f'(x) symbolically
2. Use an initial guess of the root, x;, to estimate the new value of the root X;.; as

Xig =% - Te4)
f(x)
3. Repeat the process until the difference of the new estimated root and the previous root is
negligible.



