UNIT-2
DIGITAL MODULATION TECHNIQUES

Digital Modulation provides more information capacity, high data security, quicker system
availability with great quality communication. Hence, digital modulation techniques have a greater
demand, for their capacity to convey larger amounts of data than analog ones.

There are many types of digital modulation techniques and we can even use a combination of these
techniques as well. In this chapter, we will be discussing the most prominent digital modulation
techniques.

if the information signal is digital and the amplitude (IV of the carrier is varied proportional to
the information signal, a digitally modulated signal called amplitude shift keying (ASK) is
produced.
If the frequency (f) is varied proportional to the information signal, frequency shift keying (FSK) is
produced, and if the phase of the carrier (0) is varied proportional to the information signal,
phase shift keying (PSK) is produced. If both the amplitude and the phase are varied proportional to
the information signal, quadrature amplitude modulation (QAM) results. ASK, FSK, PSK, and

QAM are all forms of digital modulation:

WD =Vsin(2x - ft + 6)
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a simplified block diagram for a digital modulation system.

Amplitude Shift Keying
The amplitude of the resultant output depends upon the input data whether it should be a zero level

or a variation of positive and negative, depending upon the carrier frequency.

Amplitude Shift Keying (ASK) is a type of Amplitude Modulation which represents the binary

data in the form of variations in the amplitude of a signal.

Following is the diagram for ASK modulated waveform along with its input.
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Any modulated signal has a high frequency carrier. The binary signal when ASK is modulated,
gives a zero value for LOW input and gives the carrier output for HIGH input.
Mathematically, amplitude-shift keying is
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where vask(t) = amplitude-shift keying wave
vm(t) = digital information (modulating) signal (volts)
AJ2 = unmodulated carrier amplitude (volts)

oc= analog carrier radian frequency (radians per second, 2nfct)

In above Equation, the modulating signal [vm(t)] is a normalized binary waveform, where + 1 V =

logic 1 and -1 V = logic 0. Therefore, for a logic 1 input, vm(t) = + 1 V, Equation 2.12 reduces to

<
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= A cos(w.t)

Mathematically, amplitude-shift keying is (2.12) where vask(t) = amplitude-shift keying wave

vm(t) = digital information (modulating) signal (volts) A/2 = unmodulated carrier amplitude (volts)
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wc= analog carrier radian frequency (radians per second, 2xfct) In Equation 2.12, the modulating
signal [vm(t)] is a normalized binary waveform, where + 1 V = logic 1 and -1 V = logic O.
Therefore, for a logic 1 input, vm(t) =+ 1V, Equation 2.12 reduces to and for a logic 0 input, vm(t)
= -1 V,Equation reduces to

Vas(t) = [1 - I]IVI:C().\(U»(I)J

—

Thus, the modulated wave vask(t),is either A cos(wct) or 0. Hence, the carrier is either "on “or
"off," which is why amplitude-shift keying is sometimes referred to as on-off keying (OOK).

it can be seen that for every change in the input binary data stream, there is one change in the ASK
waveform, and the time of one bit (tb) equals the time of one analog signaling element (t,).
B=fb/1=1b baud = fb/1 = fb

Example :
Determine the baud and minimum bandwidth necessary to pass a 10 kbps binary signal using
amplitude shift keying. 10Solution For ASK, N = 1, and the baud and minimum bandwidth are

determined from Equations 2.11 and 2.10, respectively:

B =10,000/1=10,000
baud = 10, 000 /1 = 10,000
The use of amplitude-modulated analog carriers to transport digital information is a relatively low-
quality, low-cost type of digital modulation and, therefore, is seldom used except for very low-
speed telemetry circuits.
ASK TRANSMITTER:

Mixer

Modulation signal ASK modulated wave
mit) Sask(t)

Carrier wave
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The input binary sequence is applied to the product modulator. The product modulator amplitude
modulates the sinusoidal carrier .it passes the carrier when input bit is ‘1’ .it blocks the carrier when

input bit is ‘0.’
Coherent ASK DETECTOR:

FREQUENCYSHIFT KEYING
The frequency of the output signal will be either high or low, depending upon the input data

applied.

Frequency Shift Keying (FSK) is the digital modulation technique in which the frequency of the
carrier signal varies according to the discrete digital changes. FSK is a scheme of frequency

modulation.

Following is the diagram for FSK modulated waveform along with its input.
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FSK Modulated output wave

The output of a FSK modulated wave is high in frequency for a binary HIGH input and is low in

frequency for a binary LOW input. The binary 1s and Os are called Mark and Space frequencies.

FSK is a form of constant-amplitude angle modulation similar to standard frequency modulation
(FM) except the modulating signal is a binary signal that varies between two discrete voltage levels
rather than a continuously changing analog waveform.Consequently, FSK is sometimes called
binary FSK (BFSK). The general expression for FSK is

4




where vf&k(” = Vc COS{QI[U;' 1 Vm(tj ﬁﬂ! ]I
vrsk(t) = binary FSK waveform
V. = peak analog carrier amplitude (volts)

fc = analog carrier center frequency (hertz)
f=peak change (shift)in the analog carrier frequency(hertz)
Vm(t) = binary input (modulating) signal (volts)

From Equation 2.13, it can be seen that the peak shift in the carrier frequency ( f) is proportional to
the amplitude of the binary input signal (vm[t]), and the direction of the shift is determined by the
polarity.

The modulating signal is a normalized binary waveform where a logic 1 =+ 1 V and a logic 0 = -1

V. Thus, for a logic | input, vm(t) = + 1, Equation 2.13 can be rewritten as

(0 = V.cos[2n(f,. + A1

For a logic 0 input, vm(t) = -1, quatfon becomes

VD) = Vo cos|2n(f, — Af]

With binary FSK, the carrier center frequency (fc) is shifted (deviated) up and down in the

frequency domain by the binary input signal as shown in Figure 2-3.

fs fe Sm

Logic 1

Logic 0 Binary input
. signal
FIGURE:FSKmrthe frequency domain
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As the binary input signal changes from a logic O to a logic 1 and vice versa, the output frequency
shifts between two frequencies: a mark, or logic 1 frequency (fm), and a space, or logic 0 frequency
(fs). The mark and space frequencies are separated from the carrier frequency by the peak frequency
deviation ( f) and from each other by 2 f.

Frequency deviation is illustrated in Figure 2-3 and expressed mathematically as

f: |fm —fsl / 2 (214)

where  f = frejuency deviation (hertz)
|fm— fs| = absolute difference between the mark and space frequencies (hertz)

Figure 2-4a shows in the time domain the binary input to an FSK modulator and the corresponding
FSK output.

When the binary input (f») changes from a logic 1 to a logic 0 and vice versa, the FSK output

frequency shifts from a mark ( fn) to a space (fs) frequency and vice versa.

In Figure 2-4a, the mark frequency is the higher frequency (fc + f) and the space frequency is the

lower frequency (fc- f), although this relationship could be just the opposite.

Figure 2-4b shows the truth table for a binary FSK modulator. The truth table shows the input and

output possibilities for a given digital modulation scheme.

b
Binary
input t]lof1]of1|ol1|o]1]o0
f 1
\ o 2 | | | | ! ' ! | | g 3
( A | I | TR ¢ ' | binary frequency
g Analog I | input output
output ! A | \ [ : : : '
1 | ' | | ! .
TeTwideSoile Vet st T Tart 9 space {f,)
| mark (f,,)
fm. mark frequency; /. space frequency
(a) (b)
b @]
FIGURE 2-4 FSK in the time domain: (a) waveform: (b) truth
table




FSK Bit Rate, Baud, and Bandwidth

In Figure 2-4a, it can be seen that the time of one bit (tv) is the same as the time the FSK output is a
mark of space frequency (ts). Thus, the bit time equals the time of an FSK signaling element, and

the bit rate equals the baud.
The baud for binary FSK can also be determined by substituting N = 1 in Equation 2.11:

baud = fo/ 1 =fy
The minimum bandwidth for FSK is given as
B=|(fs— fo) — (fm— fo)|
=|(fs— fm)| + 2fp
and since |(fs— fm)| equals 2 f, the minimum bandwidth can be approximated as
B=2(f+fy) (2.15)
where
B= minimum Nyquist bandwidth (hertz)
f= frequency deviation |(fm— fs)| (hertz)
fo = input bit rate (bps)
Example 2-2

Determine (a) the peak frequency deviation, (b) minimum bandwidth, and (c) baud for a binary
FSK signal with a mark frequency of 49 kHz, a space frequency of 51 kHz, and an input bit rate of
2 kbps.

Solution

a. The peak frequency deviation is determined from Equation 2.14:

f=|149kHz - 51 kHz| / 2 =1 kHz
b. The minimum bandwidth is determined from Equation 2.15:
B = 2(100+ 2000)
=6 kHz




c. For FSK, N = 1, and the baud is determined from Equation 2.11 as
baud = 2000 / 1 = 2000

FSK TRANSMITTER:

Figure 2-6 shows a simplified binary FSK modulator, which is very similar to a conventional FM
modulator and is very often a voltage-controlled oscillator (VCO).The center frequency (fc) is
chosen such that it falls halfway between the mark and space frequencies.

Lo FSK output
ciy JUuyuL FSK modulator
it e (VCO) e
k1 = HZ/V
|
~Af : +Af
|
Sm fe /s
Logic O
Logic 1

A logic 1 input shifts the VCO output to the mark frequency, and a logic 0 input shifts the VCO
output to the space frequency. Consequently, as the binary input signal changes back and forth
between logic 1 and logic 0 conditions, the VCO output shifts or deviates back and forth between
the mark and space frequencies.

NRZ R FSK output
binary JuUut FSK modulator
input S (VCO) e
k‘ = HZIV
1
| —Af : +Af
| |
fm fc f&‘
Logic 0 l
Logic 1

FIGURE 2-6 FSK modulator

A VCO-FSK modulator can be operated in the sweep mode where the peak frequency deviation is
simply the product of the binary input voltage and the deviation sensitivity of the VCO.




With the sweep mode of modulation, the frequency deviation is expressed mathematically as
f = vm(t)ki (2-19)
Vm(t) = peak binary modulating-signal voltage (volts)

ki = deviation sensitivity (hertz per volt).
FSK Receiver

FSK demodulation is quite simple with a circuit such as the one shown in Figure 2-7.
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FIGURE 2-7 Noncoherent FSK demodulator

The FSK input signal is simultaneously applied to the inputs of both bandpass filters (BPFs)
through a power splitter. The respective filter passes only the mark or only the space frequency on to
its respective envelope detector.The envelope detectors, in turn, indicate the total power in each

passband, and the comparator responds to the largest of the two powers.This type of FSK detection
is referred to as noncoherent detection.

Figure 2-8 shows the block diagram for a coherent FSK receiver.The incoming FSK signal is

multiplied by a recovered carrier signal that has the exact same frequency and phase as the
transmitter reference.

However, the two transmitted frequencies (the mark and space frequencies) are not generally
continuous; it is not practical to reproduce a local reference that is coherent with both of them.
Consequently, coherent FSK detection is seldom used.

Multiplier

G )

Power -
FSK input —» splitter Carrier >
Multiplier >+~ Dataout
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FIGURE 2-8 Coherent FSK demodulator




PHASESHIFT KEYING:

The phase of the output signal gets shifted depending upon the input. These are mainly of two
types, namely BPSK and QPSK, according to the number of phase shifts. The other one is DPSK
which changes the phase according to the previous value.

i1 0 0 1 0 1 1 O

Phase shift keying (PSK)

Phase Shift Keying (PSK) is the digital modulation technique in which the phase of the carrier
signal is changed by varying the sine and cosine inputs at a particular time. PSK technique is widely
used for wireless LANS, bio-metric, contactless operations, along with RFID and Bluetooth

communications.
PSK is of two types, depending upon the phases the signal gets shifted. They are —

Binary Phase Shift Keying (BPSK)

This is also called as 2-phase PSK (or) Phase Reversal Keying. In this technique, the sine wave

carrier takes two phase reversals such as 0° and 180°.

BPSK is basically a DSB-SC (Double Sideband Suppressed Carrier) modulation scheme, for

message being the digital information.

Following is the image of BPSK Modulated output wave along with its input.

! Input binary sequence time

time

BPSK Modulated output wave
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Binary Phase-Shift Keying

The simplest form of PSK is binary phase-shift keying (BPSK), where N = 1 and M =
2.Therefore, with BPSK, two phases (2! = 2) are possible for the carrier.One phase represents a
logic 1, and the other phase represents a logic 0. As the input digital signal changes state (i.e., from
altoaOorfroma0toal), the phase of the output carrier shifts between two angles that are
separated by 180°.

Hence, other names for BPSK are phase reversal keying (PRK) and biphase modulation. BPSK
is a form of square-wave modulation of a continuous wave (CW) signal.

R Y i

Binar Level
datay 5| EoFvEiiar Balanced » | Bandpass » Modulated
in (UP to BP) modulator filter PSK output

AV sin(w.)

Buffer
A

f'b sin(m,t)

Reference
carrier
oscillator

FIGURE 2-12 BPSK transmitter
BPSK TRANSMITTER:

Figure 2-12 shows a simplified block diagram of a BPSK transmitter. The balanced modulator acts
as a phase reversing switch. Depending on the logic condition of the digital input, the carrier is
transferred to the output either in phase or 180° out of phase with the reference carrier oscillator.

Figure 2-13 shows the schematic diagram of a balanced ring modulator. The balanced modulator
has two inputs: a carrier that is in phase with the reference oscillator and the binary digital data. For
the balanced modulator to operate properly, the digital input voltage must be much greater than the
peak carrier voltage.

This ensures that the digital input controls the on/off state of diodes D1 to D4. If the binary input is
a logic 1(positive voltage), diodes D 1 and D2 are forward biased and on, while diodes D3 and D4
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are reverse biased and off (Figure 2-13b). With the polarities shown, the carrier voltage is
developed across transformer T2 in phase with the carrier voltage across T

1. Consequently, the output signal is in phase with the reference oscillator.

If the binary input is a logic 0 (negative voltage), diodes DI and D2 are reverse biased and off,
while diodes D3 and D4 are forward biased and on (Figure 9-13c). As a result, the carrier voltage is
developed across transformer T2 180° out of phase with the carrier voltage across T 1.

D1

m™ T2
L ] * @
sin wct Reference D3
Modulated PSK
’\; input D4 output
D2
Binary data in
(a)
m™ D1 (on) T2
+|® *+ D3 and D4 +|® )+
- /'\j (off) ,\J
sin wet sin wet
_— —
Carrier o Carrier o
input - = = = output
D2 (on)
| =
+V (Binary 1)

(b)

-V (Binary 0)
{c)

FIGURE 9-13 (a) Balanced ring modulator; (b) logic 1 input; (c) logic 0 input
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FIGURE 2-14 BPSK modulator: (a) truth table; (b) phasor diagram; (c) constellation
diagram

BANDWIDTH CONSIDERATIONS OF BPSK:
In a BPSK modulator. the carrier input signal is multiplied by the binary data.

If + 1V is assigned to a logic 1 and -1 V is assigned to a logic 0, the input carrier (sin wct) is
multiplied by eithera+or-1.

The output signal is either + 1 sin wct or -1 sin wct the first represents a signal that is in phase with
the reference oscillator, the latter a signal that is 180° out of phase with the reference
oscillator.Each time the input logic condition changes, the output phase changes.

Mathematically, the output of a BPSK modulator is proportional to
BPSK output = [sin (21rfat)] x [sin (217fct)] (2.20)

where
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fa = maximum fundamental frequency of binary input (hertz)

fc = reference carrier frequency (hertz)
Solving for the trig identity for the product of two sine functions,
0.5cos[21(fc — fa)t] — 0.5cos[21r(fc + f)t]

Thus, the minimum double-sided Nyquist bandwidth (B) is

fc + fa fc+ fa
-f. +f

-(fc + fa) or o
2fa

and because fa=fy/ 2, where fo = input bit rate,
where B is the minimum double-sided Nyquist bandwidth.

Figure 2-15 shows the output phase-versus-time relationship for a BPSK waveform. Logic 1 input
produces an analog output signal with a 0° phase angle, and a logic 0 input produces an analog
output signal with a 180° phase angle.

As the binary input shifts between a logic 1 and a logic 0 condition and vice versa, the phase of the
BPSK waveform shifts between 0° and 180°, respectively.

BPSK signaling element (ts) is equal to the time of one information bit (tv), which indicates that the
bit rate equals the baud.

-

sinact ~-sin ot 8in ot -8in ot sin wgt ~sin @t
o 180 0 180 0 180 - Degrees
0 x o x 0 x Radians

FIGURE 2-15 Output phase-versus-time relationship for a BPSK modulator
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Example:

For a BPSK modulator with a carrier frequency of 70 MHz and an input bit rate of 10 Mbps,
determine the maximum and minimum upper and lower side frequencies, draw the output spectrum,
de-termine the minimum Nyquist bandwidth, and calculate the baud..

Solution
Substituting into Equation 2-20 yields
output = [sin (21rfat)] X [sin (21rft)]; fa=fo/ 2 =5 MHz

=[sin 211(5MH2z)t)] x [sin 211(70MH2z)t)]
=0.5cos[21(70MHz — 5MHZz)t] — 0.5cos[21T(70MHz + 5MHZz)t]
lower side frequency upper side frequency

Minimum lower side frequency (LSF):
LSF=70MHz - 5MHz = 65MHz
Maximum upper side frequency (USF):
USF =70 MHz + 5 MHz = 75 MHz

Therefore, the output spectrum for the worst-case binary input conditions is as follows: The
minimum Nyquist bandwidth (B) is

<« B=10MHz - — >
:
’.
65 MHz 70 MHz 75 MHz
(Suppressed)

B =75 MHz - 65 MHz = 10 MHz
and the baud = fp or 10 megabaud.

BPSK receiver:.

Figure 2-16 shows the block diagram of a BPSK receiver.
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The input signal maybe+ sin wct or - sin wct .The coherent carrier recovery circuit detects and
regenerates a carrier signal that is both frequency and phase coherent with the original transmit
carrier.

The balanced modulator is a product detector; the output is the product d the two inputs (the BPSK
signal and the recovered carrier).

The low-pass filter (LPF) operates the recovered binary data from the complex demodulated signal.

FIGURE 2-16 Block diagram of a BPSK receiver
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output
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carrier
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Mathematically, the demodulation process is as follows.
For a BPSK input signal of + sin wct (logic 1), the output of the balanced modulator is
output = (Sin wet )(sin wet) = sin®wct (2.21)
or sinwct = 0.5(1 — cos 2wet) = 0.5
filtered out
leaving output =+ 0.5V = logic 1

It can be seen that the output of the balanced modulator contains a positive voltage (+[1/2]V) and a
cosine wave at twice the carrier frequency (2 wct ).

The LPF has a cutoff frequency much lower than 2 wd, and, thus, blocks the second harmonic of
the carrier and passes only the positive constant component. A positive voltage represents a
demodulated logic 1.

For a BPSK input signal of -sin wct (logic 0), the output of the balanced modulator is
output = (-sin wet )(sin wet) = sinwct

or

sinwt = -0.5(1 — cos 2wdt) = 0.5
I

filtered out
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leaving
output =-0.5V =logic 0

The output of the balanced modulator contains a negative voltage (-[I/2]V) and a cosine wave at
twice the carrier frequency (2wct).

Again, the LPF blocks the second harmonic of the carrier and passes only the negative constant
component. A negative voltage represents a demodulated logic O.

QUADRATURE PHASE SHIFT KEYING (QPSK):

This is the phase shift keying technique, in which the sine wave carrier takes four phase reversals
such as 0°, 90°, 180°, and 270°.

If this kind of techniques are further extended, PSK can be done by eight or sixteen values also,
depending upon the requirement. The following figure represents the QPSK waveform for two bits
input, which shows the modulated result for different instances of binary inputs.

Carrier / Channel

Modulating value from two bits

0 2 1 3
(00) (10) (01) (11)

Modulated
Result

QPSK is a variation of BPSK, and it is also a DSB-SC (Double Sideband Suppressed Carrier)
modulation scheme, which sends two bits of digital information at a time, called as bigits.
Instead of the conversion of digital bits into a series of digital stream, it converts them into bit-pairs.

This decreases the data bit rate to half, which allows space for the other users.

QPSK transmitter.

A block diagram of a QPSK modulator is shown in Figure 2-17Two bits (a dibit) are
clocked into the bit splitter. After both bits have been serially inputted, they are simultaneously
parallel outputted.
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The | bit modulates a carrier that is in phase with the reference oscillator (hence the name "I" for "in
phase" channel), and theQ bit modulate, a carrier that is 90° out of phase.

For alogic 1 =+ 1V and a logic 0= - 1 V, two phases are possible at the output of the | balanced
modulator (+sin wct and - sin wct), and two phases are possible at the output of the Q balanced
modulator (+cos wct), and (-cos wct).

When the linear summer combines the two quadrature (90° out of phase) signals, there are four
possible resultant phasors given by these expressions: + sin wct + €0S wct, + Sin wct - €OS Wet, -Sin
wct + cos wet, and -sin wct - cos wt.

I channel f,/2 Balanced | 1 sin @t
Logic 1= +1V modulator
LogicO=-1V
o i Bandpass
r:avty. c;\bmt 8in mt filter
Reference
carrier
oscillator
I (sin wt) QPSK
Bit Linear output
splitte summer BPF
Q
]
90° phase
shift
Bit 2 Bandpass
clock cos wxt el
Logic 1=41V L
Logic O=-1V Balanced
Q channel f,/2 modulator | 4oog @t

FIGURE 2-17 QPSK modulator

Example:

For the QPSK modulator shown in Figure 2-17, construct the truthtable, phasor diagram, and
constellation diagram.

Solution

For a binary data input of Q = O and I= 0, the two inputs to the Ibalanced modulator are -1 and sin
wct, and the two inputs to the Q balanced modulator are -1 and cos wt.

Consequently, the outputs are
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| balanced modulator =(-1)(sin wct) = -1 sin wct

Q balanced modulator =(-1)(cos wct) = -1 cos wct and the output of the linear summer is
-1 coS Wt - 1 sin wct = 1.414 sin(wct - 135°)

For the remaining dibit codes (01, 10, and 11), the procedure is the same. The results are shown in
Figure 2-18a.

Q 1 Q 1
cOs met - 8in et cos ot ©O8 ot + sin it

1 0
sin (ot + 135°)

Binary QPSK S
input output
Q 1 phaso
0 0 -135*
0 1 ~45° Q 1
1 0 +135* ~COS (et ~ Sin ot =C0s st ~cO8 et + 8in et
LI | +45°
0 0 0 1
sin (et - 135%) $in (it - 45%)
(8)
(b)
10 COS it n
el ' - o
-8 gt == e ———— in wt
i
i
i
® ' L J
00 ~CO8 .t 01

FIGURE 2-18 QPSK modulator: (a) truth table; (b) phasor diagram; (c) constellation
diagram

In Figures 2-18b and c, it can be seen that with QPSK each of the four possible output phasors has
exactly the same amplitude. Therefore, the binary information must be encoded entirely in the

phase of the output signal
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Figure 2-18b, it can be seen that the angular separation between any two adjacent phasors in QPSK
is 90°.Therefore, a QPSK signal can undergo almost a+45° or -45° shift in phase during
transmission and still retain the correct encoded information when demodulated at the receiver.

Figure 2-19 shows the output phase-versus-time relationship for a QPSK modulator.

Dibit Q 1 Q 1 Q 1 Q
input 1 0 0 1 0

' 1
| | 1 1 1
| 1

|

apsK (\ NE -
ENA P A

+135°

-45° ! +45° ! -135° ' Degrees

FIGURE 2-19 Output phase-versus-time relationship for a PSK modulator
Bandwidth considerations of QPSK

With QPSK, because the input data are divided into two channels, the bit rate in either the I or the Q
channel is equal to one-half of the input data rate (fu/2) (one-half of fu/2 = fu/4).

QPSK RECEIVER:
The block diagram of a QPSK receiver is shown in Figure 2-21

The power splitter directs the input QPSK signal to the | and Q product detectors and the carrier
recovery circuit. The carrier recovery circuit reproduces the original transmit carrier oscillator
signal. The recovered carrier must be frequency and phase coherent with the transmit reference
carrier. The QPSK signal is demodulated in the I and Q product detectors, which generate the
original I and Q data bits. The outputs of the product detectors are fed to the bit combining circuit,
where they are converted from parallel | and Q data channels to a single binary output data stream.
The incoming QPSK signal may be any one of the four possible output phases shown in Figure 2-
18. To illustrate the demodulation process, let the incoming QPSK signal be -sin wct + cos wct.
Mathematically, the demodulation process is as follows.
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1 Channel Product (oin @t) {-ein ot « cos at) =12V Bogic 0)
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Q channel (cos o) (-sin et » 008 mt) +1/2V (logic 1)

FIGURE 2-21 QPSK receiver

The receive QPSK signal (-sin w¢t + cos wct) is one of the inputs to the I product detector. The
other input is the recovered carrier (sin wct). The output of the | product detector is

[ = (—sin wt + cos w.t)(sin 1)

—

- e

QPSK input signal carrier

RS

B | —

—sin” w + (cos w 1)(sin 1)

—

(—sin w)(sin ) + (cos w1)(sin w 1)

(filtered out) (equals 0)

B9 | -

cos 2wt +

1| —

1
- =V (logic 0)

sin 2wt +

|
2sin 0

1 l . 1.
—;)—(l - cos 2w.t) + ;sm(m( + w )t + ;sm(w(. - W)

(2.23)

Again, the receive QPSK signal (-sin wct + cos wct) is one of the inputs to the Q product detector.
The other input is the recovered carrier shifted 90° in phase (cos wct). The output of the Q product

detector is
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Q = (—sin wt + cos w.1)(cos wr)

— o J
— ~"

QPSK mnput signal carrier

= cos’ wt — (sin w,t)(cos w1)

1 (I E :
;(l + cos 2w,t) — ;sm(w, + W)t — 7sm(w‘ — W)

-~ —

(filtered out) (equals 0)

| 1 |
=~ + —cos 2wt — =sin 2wt — =sin 0
Q 5 T 5c0s 2wt — Tsin 2w 1 _,sm(

-— - . -

| ;
- 2V(loglc 1) (2.2_”

The demodulated I and Q bits (0 and 1, respectively) correspond to the constellation diagram and
truth table for the QPSK modulator shown in Figure 2-18.

DIFFERENTIAL PHASE SHIFT KEYING (DPSK):

In DPSK (Differential Phase Shift Keying) the phase of the modulated signal is shifted relative to
the previous signal element. No reference signal is considered here. The signal phase follows the
high or low state of the previous element. This DPSK technique doesn’t need a reference oscillator.

The following figure represents the model waveform of DPSK.

0 0 1 1 0 1 o) 0 0 1 0

It is seen from the above figure that, if the data bit is LOW i.e., 0, then the phase of the signal is not
reversed, but is continued as it was. If the data is HIGH i.e., 1, then the phase of the signal is

reversed, as with NRZI, invert on 1 (a form of differential encoding).
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If we observe the above waveform, we can say that the HIGH state represents an M in the
modulating signal and the LOW state represents a W in the modulating signal.

The word binary represents two-bits. M simply represents a digit that corresponds to the number of
conditions, levels, or combinations possible for a given number of binary variables.

This is the type of digital modulation technique used for data transmission in which instead of one-
bit, two or more bits are transmitted at a time. As a single signal is used for multiple bit
transmission, the channel bandwidth is reduced.

DBPSK TRANSMITTER.:

Figure 2-37a shows a simplified block diagram of a differential binary phase-shift keying
(DBPSK) transmitter. An incoming information bit is XNORed with the preceding bit prior to
entering the BPSK modulator (balanced modulator).

For the first data bit, there is no preceding bit with which to compare it. Therefore, an initial
reference bit is assumed. Figure 2-37b shows the relationship between the input data, the XNOR
output data, and the phase at the output of the balanced modulator. If the initial reference bit is
assumed a logic 1, the output from the XNOR circuit is simply the complement of that shown.

In Figure 2-37b, the first data bit is XNORed with the reference bit. If they are the same, the XNOR
output is a logic 1; if they are different, the XNOR output is a logic 0. The balanced modulator
operates the same as a conventional BPSK modulator; a logic | produces +sin wct at the output, and
A logic 0 produces —sin wct at the output.
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FIGURE 9-40 [a) Clock recovery circuit. (b) tming diagram
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FIGURE 2-37 DBPSK modulator (a) block diagram (b) timing diagram

BPSK RECEIVER:

Figure 9-38 shows the block diagram and timing sequence for a DBPSK receiver. The received
signal is delayed by one bit time, then compared with the next signaling element in the balanced
modulator. If they are the same. J logic 1(+ voltage) is generated. If they are different, a logic 0 (-
voltage) is generated. [f the reference phase is incorrectly assumed, only the first demodulated bit is
in error. Differential encoding can be implemented with higher-than-binary digital modulation
schemes, although the differential algorithms are much more complicated than for DBPS K.

The primary advantage of DBPSK is the simplicity with which it can be implemented. With
DBPSK, no carrier recovery circuit is needed. A disadvantage of DBPSK s, that it requires
between 1 dB and 3 dB more signal-to-noise ratio to achieve the same bit error rate as that of
absolute PSK.
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FIGURE 2-38 DBPSK demodulator: (a) block diagram; (b) timing sequence

COHERENT RECEPTION OF FSK:

The coherent demodulator for the coherent FSK signal falls in the general form of coherent
demodulators described in Appendix B. The demodulator can be implemented with two correlators
as shown in Figure 3.5, where the two reference signals are cos(27r f t) and cos(27r fit). They must
be synchronized with the received signal. The receiver is optimum in the sense that it minimizes the
error probability for equally likely binary signals. Even though the receiver is rigorously derived in
Appendix B, some heuristic explanation here may help understand its operation. When s 1 (t) is
transmitted, the upper correlator yields a signal 1 with a positive signal component and a noise
component. However, the lower correlator output 12, due to the signals' orthogonality, has only a
noise component. Thus the output of the summer is most likely above zero, and the threshold
detector will most likely produce a 1. When s2(t) is transmitted, opposite things happen to the two
correlators and the threshold detector will most likely produce a 0. However, due to the noise nature
that its values range from -00 to m, occasionally the noise amplitude might overpower the signal
amplitude, and then detection errors will happen. An alternative to Figure 3.5 is to use just one
correlator with the reference signal cos (27r ft) - cos(2s f2t) (Figure 3.6). The correlator in Figure
can be replaced by a matched filter that matches cos(27r fit) - cos(27r f2t) (Figure 3.7). All
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implementations are equivalent in terms of error performance (see Appendix B). Assuming an

AWGN channel, the received signal is
r(t) = s;(t) +n(t), i=12

where n(t) is the additive white Gaussian noise with zero mean and a two-sided power spectral
density A',/2. From (B.33) the bit error probability for any equally likely binary signals is

= R
_ E\+E; —2p,WE | E;
=@ 2N

where No/2 is the two-sided power spectral density of the additive white Gaussian noise. For
Sunde's FSK signals El = Ez = Eb, pl2 = 0 (orthogonal). thus the error probability is

B
o Q(\/"ivb)

where Eb = A2T/2 is the average bit energy of the FSK signal. The above Pb is plotted in Figure 3.8
where Pb of noncoherently demodulated FSK, whose expression will be given shortly, is also

plotted for comparison.

(k+1)T 7
I dt

kT
Threshold
cos(2xrfit) N Detector
r(t) ! 1
== Z 0 5 >
cos(2nfat) _

(k+1)T 15
5
kT
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Figure: Pb of coherently and non-coherently demodulated FSK signal.

NONCOHERENT DEMODULATION AND ERROR PERFORMANCE:

Coherently FSK signals can be noncoherently demodulated to avoid the carrier recovery.

Noncoherently generated FSK can only be noncoherently demodulated. We refer to both cases as

noncoherent FSK. In both cases the demodulation problem becomes a problem of detecting signals

with unknown phases. In Appendix B we have shown that the optimum receiver is a quadrature

receiver. It can be implemented using correlators or equivalently, matched filters. Here we assume

that the binary noncoherent FSK signals are equally likely and with equal energies. Under these

assumptions, the demodulator using correlators is shown in Figure 3.9. Again, like in the coherent

case, the optimality of the receiver has been rigorously proved (Appendix B). However, we can

easily understand its operation by some heuristic argument as follows. The received signal

(ignoring noise for the moment) with an unknown phase can be written as

5:(t.8)

= Acos(2rfit+80). i=12
A cos @ cos 27 fit — Asin@sin 2 f;t
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The signal consists of an in phase component A cos 8 cos 27r ft and a quadrature component A sin
8 sin 2x f,t sin 0. Thus the signal is partially correlated with cos 2s fit and partiah'y correlated with
sin 27r fit. Therefore we use two correlators to collect the signal energy in these two parts. The
outputs of the in phase and quadrature correlators will be cos 19 and sin 8, respectively. Depending
on the value of the unknown phase 8, these two outputs could be anything in (- 5, y). Fortunately
the squared sum of these two signals is not dependent on the unknown phase. That is
( %7: cos 8)? + (%Z sin#)? = 4-227;2

This quantity is actually the mean value of the statistics 1? when signal si (t) is transmitted and noise
is taken into consideration. When si (t) is not transmitted the mean value of 1: is 0. The comparator
decides which signal is sent by checking these 1?. The matched filter equivalence to Figure 3.9 is
shown in Figure 3.10 which has the same error performance. For implementation simplicity we can
replace the matched filters by bandpass filters centered at f and fi, respectively (Figure 3.1 1).

However, if the bandpass filters are not matched to the FSK signals, degradation to

Sample at
t—kT
Bandpass Envelope \ h
B filter at f) Detector v ;
flhy>10
r(t) choose |
Sample at Comparator [—» I > 1,
t= kT choose 0
Bandpass Envelope \ J
filter at o Detector l;

various extents will result. The bit error probability can be derived using the correlator demodulator
(Appendix B). Here we further assume that the FSK signals are orthogonal, then from Appendix B

the error probability is

P, = —e~Ev/2N
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PART-2

DATATRANSMISSION
BASE BAND SIGNAL RECEIVER:

Consider that a binary encoded signal consists of a time sequence of voltage levels +V or -V.
if there is a guard interval between the bits, the signal forms a sequence of positive and
negative pulses. in either case there is no particular interest in preserving the waveform of the
signal after reception .we are interested only in knowing within each bit interval whether the
transmitted voltage was +V or —V. With noise present, the receives signal and noise together
will yield sample values generally different from £V. In this case, what deduction shall we
make from the sample value concerning the transmitted bit?

Supposc that the noise is gaussian and therefore the noise voltage has a
probability density which is entirely symmetrical with respect to zero volts. Then
the probability that the noise has increased the sample value is the same as the
probability that the noise has decreased the sample value. It then seems entirely
rcasonable that we can do no better than to assume that if the sample value is
positive the transmitted level was + V. and if the sample value is negative the
transmitted level was — V. It is, of course, possible that at the sampling time the
noisc voltage may be of magnitude larger than ¥V and of a polarity opposite Lo
the polarity assigned to the transmitted bit. In this casc an error will be made as
indicated in Fig. 11.1-1. Here the transmitted bit is represented by the voliage
+ ¥V which is sustained over an interval 7 from r, to r,. Noise has been superim-
posed on the level + V so that the voltage r represents the reccived signal and
noise. If now the sampling should happen to take place at a time 7 = 1, 4+ Ar, an
error will have been made.

We can reduce the probability of error by processing the received signal plus
noise in such a manner that we are then able to find a samplec time where the
sample voltage due to the signal is emphasized relative to the sample voltage due
to the noise. Such a processer (receiver) is shown in Fig. 11.1-2. The signal input
during a bit interval is indicated. As a matter of convenience we have set t = 0 at
the beginning of the interval. The waveform of the signal s(f) before ¢t = 0 and
after + = T has not been indicated since, as will appear, the operation of the
receiver during each bit interval is independent of the wavcform during past
and future bit intervals.

The signal s(r) with added white gaussian noisc n(r) of power spectral density
n/2 is presented to an integrator. At time 7 = 0 4+ we require that capacitor C be
uncharged. Such a discharged condition may be ensured by a brief closing of
switch SW, at time r = 0 — | thus relieving C of any charge it may have acquired
during the previous interval. The sample is taken at the output of the integrator
by closing this sampling switch SW., . This sample is taken at the end of the bit
interval, at ¢t = 7. The signal processing indicated in Fig. 11.1-2 is described by
the phrase inregrate and dump, the term dump referring to the abrupt discharge of
the capacitor after each sampling.
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Figure 11.1-2 A receiver for a binary coded signal.

Peak Signal to RMS Noise Output Voltage Ratio

The integrator yields an output which is the integral of its input multiplied by
I/RC. Using t = RC, we have

R B 1 (7 1 rr
:.-,,(T)=—J- [s(r) + n(e)] d =--[‘s{r) dr+-Lmnd: (11.1-1)
T o T T
The sample voltage due to the signal is
T VT
sJT):%L th=»_r— (11.1-2)

The sample voltage due to the noisc is
T
"°(T)=1I nie) de (11.1-3)
T Jo

This noise-sampling voltage »n,(7) is a gaussian random variable in contrast with
n(r). which is a gaussian random process.
The variance of n(7T) was found in Scc. 7.9 [see Eq. (7.9-17)] to be

nT

o2 = nZ(T) = >23

(11.1-4)

and, as noted in Sec. 7.3, n(7) has a gaussian probability density.

The output of the integrator, before the sampling switch, is v (7) = s.(r)
+ n (7). As shown in Fig. 11.1-3a, the signal output s,(r) is a ramp, in each bit
interval, of duration 7. At the end of the interval the ramp attains the voltage
sAT) which is + VT /tr or — VT /1, depending on whether the bitisa | or a 0. At
the end of cach interval the switch SW, in Fig. 11.1-2 closes momentarily to dis-
charge the capacitor so that s, (r) drops to zero. The noise n(r). shown in
Fig 11.1-3b, also starts each interval with n(0) = 0 and has the random value
n(7) at the end of each interval. The sampling switch SW, closes briefly just
before the closing of SW, and hence reads the voltage

vAT)=5AT) + n(T) (11.1-5)
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Figure 11.1-3 (a) The signal output and () the noise cutput of the integrator of Fig. 11.1-2.

We would naturally like the output signal voltage to be as large as possible
in comparison with the noise voltage. Hence a figure of merit of interest is the
signal-to-noise ratio

%:% Vi (11.1-6)
"ﬂ

This result is calculated from Eqs. (11.1-2) and (1 1.1-4). Note that the signal-to-
noise ratio increases with increasing bit duration 7" and that it depends on V2T
which is the normalized energy of the bit signal. Therefore. a bit represented by a
narrow, high amplitude signal and one by a wide, low amplitude signal are
equally effective, provided V7?7 is kept constant.

It is instructive to note that the integrator filters the signal and the noise such
that the signal voltage increases linearly with time, while the standard deviation
{rms value) of the noise increases more slowly, as ﬁ Thus, the integrator
enhances the signal relative to the noise, and this enhancement increases with
time as shown in Eq. (11.1-6).

PROBABILITY OF ERROR

Since the function of a receiver of a data transmission is to ditinguish the bit 1 from the _bit 0
in the presence of noise, a most important charcteristic is the probability that an error will be
made in such a determination.we now calculate this error probabilty Pe for the integrate and

dump receiver of fig 11.1-2
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We have scen that the probability density of the noise sample », (7T} is gauss-
ian and hence appears as in Fig. 11.2-1. The density is therefore given by

e M TV 2,2

—— (11.2-1)
W 2nol

FingT)y) =<

where a7, the variance, is a2 = n2(7T) given by Eq. {11.1-4). Suppose, then, that
during some bit interval the input-signal voltage is held at, say, — V. Then, at the
sample time, the signal sample voltage is s (7) = — V' 7 /7, while the noise sample
is n {T). If n{7T) is positive and larger in magnitude than V7 /r, the total sample
voltage v (T) = s5,(T) = n(7T) will be positive. Such a positive sample voltage will
result in an error, since as noted earlier, we have instructed the receiver to inter-
pret such a positive sample voltage to mean that the signal voltage was -+ V
during the bit interval. The probability of such a misinterpretation, that is, the
probability that n (7)) = VT /z, 1s given by the arca of the shaded region in
Fig. 11.2-1. The probability of error is, using Eq. (11.2-1).

o = e mo (TN 2ma2
P, = S (T)] dn (T) = ——dn (T (11.2-2)
JV S L ] Ve V 21:03

Defining x = »n( T).lﬁa,. and using Eq. (11.1-4), Eq. (11.2-2) may be rewritten as

o

) e
2. S dcorim

7 2 12 142
—lerfc(l/ \/I)=lcrfc(v T) W (’E—’) (11.2-3)
2 ” 2 ] 2 n

in which E, = V*T is the signal energy of a bit.

IT the signal voltage were held instead at + V during some bit interval, then it
is clear from the symmetry of the situation that the probability of error wonld
again be given by P_in Eq. (11.2-3). Hence Eq. (11.2-3) gives P_quite generallv.

P_ e ** dx

fln,tT]

vr n, (T
T

Figure 11.2-1 The gaussian probabhility density of the noise sample n (7).
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B a8 Figure 11.2-2 Variation of P_ versus Eln.
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The probability of error pe, as given in eq.(11.2-3),is plotted in fig.11.2-2.note that pe decreases
rapidly as Es/n increases. The maximum value of pe IS %2.thus ,even if the signal is entirely lost in
the noise so that any determination of the receiver is a sheer guess, the receiver cannot bi wrong
more than half the time on the average.

THE OPTIMUM FILTER:

In the receiver system of Fig 11.1-2, the signal was passed through a filter(integrator),so that at the
sampling time the signal voltage might be emphasized in comparison with the noise voltage. We are
naturally led to risk whether the integrator is the optimum filter for the purpose of minimizing the
probability of error. We shall find that the received signal contemplated in system of fig 11.1-2 the
integrator is indeed the optimum filter. However, before returning specifically to the integrator
receiver.

We assume that the received signal is a binary waveform. One binary digit is represented by
a signal waveformsS; (t) which persists for time T, while the4 other bit is represented by the
waveform Sx(t) which also lasts for an interval T. For example, in the transmission at baseband, as
shown in fig 11.1-2 Sy(t)=+V; for other modulation systems, different waveforms are transmitted.
for example for PSK signaling , S1(t)=Acoswot and Sa(t)=-Acoswot;while for FSK,
S1(t)=Acos(wo+ayt.

As shown in Fig. 11.3-1 the input, which is =,{r] or =;(r), is corrupted by the
addition of noise mf). The noise is gaussian and has a spectral density 7 )L [In
most cases of interest the noise is white, so that & f) = /2. However, we shall
assume the more general possibility, since it introdouces no complication to do
50.] The signal and noise are filtered and then sampled at the end of each hit
interval. The output sample is either o (T) = 5 (T) + n AT or v AT} = 5..(T)
+ n AT) We assume that immediately after cach sample, every energy-storing
element in the filter has been discharged.

We hawve already considered inm Sec. 2.22, the matter of signal determination
in the presence of noise. Thus, we note that in the abscnce of noise the outrpur
sample would be o (T = 5,07 or 5, TL When noise is presenl we have shown
that to minimize the probability of error one should assume that s,(r) has bheen
transmitted il v (T is closer o 5,,(T) than to 50Tk Similarly, we assume s.(r)
has been transmitted if v (T is closer to s5,,(TrL The decision boundary is there-
fore midway betwern 5, (T) and £, T) For example, in the baseband system of
Fig. 10.1-2, where 5 (T} = FT)/r and 5 (7)) = — VT /1, the decision boundary is
v T = 0. In general, we shall take the decision boundary 1o be

1.
> (11.3-1)

0(T) =

The probability of error for this general case may be deduced as an extension
of the considerations used in the baseband case. Supposc that s,,(T) = s_,(7) and
that s,(r) was transmitted. If, at the sampling time, the noise n {7) is positive and
larger in magnitude than the voltage difference 4[5, (7T) + 5..(7)] — s5..(7T). an
error will have been made. That is, an error [we decide that s,(r) is transmitred
rather than s,(r)] will result if

5,4(T) = 5,5(T)

3-
5 (11.3-2)

n(T) =
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Hence probability of error is

@ e =T 2y
P, = I — dn(T) (11.3-3)

U —22(THI2 o /21m

Gaussian noise, n(1)
Spectral density, G, (f)

nit) Sample 1, (T) 40 (T)
’ o—-‘oé-——— Filter "y l—o G (T) - I.l or
- Baal TI 48, (T)

'3“)

Figare 11.3-1 A receiver for binary coded signalling.
If we make the substitution x = n (T)//20,, Eq. (11.3-3) becomes

P,:%i e * dx (11.3-4a)
\/’; 51T — T2/ 2o,

Prsi e,f [ “‘T’ ’92(” (11.3-ab)
Note that for the case 5,,(7T) = VT /r and s_,(7T) = — ¥V T/r, and. using Eq. (11.1-

4), Eq. (11.3-4b) reduces to Eq. (11.2-3) as expected.

The complementary error function is a monotonically decreasing function of
its argument. (See Fig. 11.2-2)) Hence, as is to be anticipated, P_ decreases as the
difference s,,(T) — s5,,(7T) becomes larger and as the rms noise voltage o, becomes
smaller. The optimum filter, then, is the filter which maximizes the ratio

SeilT) — 5,2(T) (11.3-5)

T

We now calculate the transfer function H( /) of this optimum filter. As a matter of
mathematical convenience we shall actually maximize 2 rather than ».

Calculation of the Optimum-Filter Transfer Function H( )

The fundamental requirement we make of a binary encoded data receciver is that
it distinguishes the voltages s,(¢t) + n(r) and s5,{r) + »n(r). We have seen that the
ability of the receiver to do so depends on how large a particular receiver can
make p. It is important to note that y is proportional not to s,(f) nor to s,(r), but
rather to the difference between them. For example, in the baseband system we
represented the signals by voltage levels + V and — V. But clearly, if our only
interest was in distinguishing levels, we would do just as well to use + 2 volts and
O volt, or + 8 volts and + 6 volts, etc. (The + V and — V levels, however, have
the advantage of requiring the least average power to be transmitted.) Hence,
while s,{r}) or s.(?) is the received signal, the signal which is to be compared with
the noise, i.e., the signal which is relevant in all our error-probability calculations,
is the difference signal

p(r) = s,(t) — s,(1) (11.3-6)

Thus, for the purpose of calculating the minimum error probability, we shall
assume that the input signal to the optimum filter is p{t). The corresponding
output signal of the filter is then

Polt) = 5,,(8) — 5,2(1) (11.3-7)
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We shall let P(f) and P, f) be the Fourier transforms, respectively, of p{r} and
Palt).
If H( ) is the transfer function of the filter,

Pf)= H(YP([) (11.3-8)
and po(T) = J‘m pn(f)en-fr df= J‘m H(f}P(f)("z'!r df (11.3-9)

- an

The input noise to the optimum filter is n(r). The output noise is n(r) which
has a power spectral density G, (f) and is rclated to the power spectral density of
the input noisc G, (/) by

G () =1HUNIPGLN) (11.3-10)

Using Parseval's theorem (Eq. 1.13-5), we find that the normalized output noise
power, i.€., the noise variance a2, is

o = .[ G (f) df = I | HUO PGS ) df (11.3-11)
From Eqs. (11.3-9) and (11.3-11) we now find that
L2 PAT) _ T HUOP( )T df? (11.3-12)
a? I HN PG AS) df -

Equation (11.3-12) is unaltered by the inclusion or deletion of the absolute value
sign in the numerator since the quantity within the magnitude sign p(T) is a
positive real number. The sign has been included, however, in order to allow
further development of the equation through the use of the Schwarz inequality.

The Schwarz inequality states that given arbitrary complex functions X(f)
and Y(f) of a common variable £, then

2 o -
SJ‘ lX(.f)l’dfj LY(N ) df (11.3-13)

bl

r X(OY(S) df

The equal sign applies when
X(f)= KY*[f) (11.3-14)
where K is an arbitrary constant and Y*( () is the complex conjugate of Y( /).

We now apply the Schwarz inequality to Eq. (11.3-12) by making the identifi-
cation

X(N=J/GAN H(S) (11.3-15)
and Y(f)= —\/——GL(——B P([f)e*3*TS (11.3-16)

Using Eqgs. (11.3-15) and (11.3-16) and using the Schwarz inequality, Eq.(11.3-13),
we may rewrite Eq. (11.3-12) as

2 = Y(f) df)? _
HD L XOMOE [ e s
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or. using Eq. (1 |.3-l6).

2
sf | Y(NI1* df = I '2{}; ar (11.3-18)

The ratio p,(T)"o' will attain its maximum value when the equal sign in
Eq. (11.2-18) may be employed as is the case when X(f) = KY*(f). We then find
from Eqgs. (11.3-15) and (11.3-16) that the optimum filter which yields such a
maximum ratio p2(7T)/a? has a transfer function

P‘(f) e~ iAmST

s 3-19
me G.A. f) (11 )
Correspondingly, the maximum ratio is, from Eq. (11.3-18),
ps(T) _ [~ Pt
[ o? ]..... 3 f. . Gun Y (11.3-20)

In succeeding scctions we shall have occasion to apply Egs. (11.13-19) and
(11.13-20) to a number of cases of interest.

I1.4 WHITE NOISE: THE MATCHED FILTER

An optimum filter which yiclds a maximum ratio p2(T) a2 is called a matched
filter when the input noise is white. In this case G (f) = n/2, and Eq. (11.3-19)
hecomes

P - nerr
n/2

The impulsive response of this filter, 1.e, the responsc of the filter to a unit
strength impulse applied at ¢t = 0, 1s

H(f)= K (11.4-1)

h(t) = & ~'[H(f)] — 27? J' T Py F2sTeianrr gf (11.4-2a)

-
2K I P*(f)el2=re=1 gf (11.4-26)

-
A physically realizable filter will have an impulse response which is real, i.e., not
complex. Therefore hir) = h*(r). Replacing the right-hand mcmber of Eq. (11.4-25k)

by its complex conjugate, an operation which lcaves the equation unaltered, we
have

h(:)='2';? J‘ " PR gf e

B % §T — 1) (11.4-3b)
Finally, since p(r) = s,(r) — 5,(t) [sce Eq. (11.3-6)], we have

hit) g;:f- [SAT —t) — s(T —1)] (11.4-4)
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The significance of these results for the matched filter may be more readily
appreciated by applving them to a specific example. Consider then, as in
Fig. 11.4-1a, that s5,{r) is a triangular waveform of duration 7, while s,{7), as
shown in Fig 11.4-15, is of identical form except of reversed polarity. Then p(r) is
as shown in Fig. 11.4-Ic, and p{ — 1) appears in Fig. 11.4-1d. The waveform p{ —r)
is the waveform p{7) rotated around the axis t = 0. Finally, the waveform p{ T — 1)
called for as the impulse response of the filter in Eq. (11.4-35) is this rotated
waveform p{—r) translated in the positive ¢ direction by amount 7. This last
translation ensures that A7) = O for t < O as is required for a causal filter.

In general, the impulsive response of the matched filter consists of p(t) rotated about t=0 and
then delayed long enough(i.e., a time T) to make the filter realizable. We may note in passing, that
any additional delay that a filter might introduce would in no way interfere with the performance of
the filter ,for both signal and noise would be delayed by the same amount, and at the sampling time
(which would need similarity to be delayed)the ratio of signal to noise would remain unaltered.

(1)
G pemm—-
(a)
T t
1
N r
t
(L))
- e~
PUL) = s (t)=uy(0)
[T -
(e)
T t
pl~t)
""" '{ 2a
(d)
= = :
p(T-1)
2a -

(e) Figure 11.4-1 The signals (a) 5,(r), (B) 5,(1), and
(€) plr) = 5,(1) — 5,(t). (d) plr) rorated about the
axis t = (. (¢) The waveform in (d) translated 10
the right by amount T

1.5 PROBABILITY OF ERROR OF THE MATCHED FILTER

The probability of error which results when employing a matched filter, may be
found by evaluating the maximum signal-to-noise ratio [pX(TVa2]... given by
Fq. (11.3-20). With G () = n/2. Eq. (11.3-20) becomes

AT 2 =
[Mz)] =’—’_{ | PO df (11.5-1)

a,
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From parseval's theorem we have

- £ T
'[ [P df = I pi(n) dt = f pi(1) dt {11.5-2)
o« - (U

In the last integral in Eq. (11.5-2), the limits take account of the fact that p(r) per-
sists for only a time 7. With p(r) = s,(t) — s,(r). and using Egqg. (11.5-2), we may
write Eq. (11.5-1) as

g 2 (7
l:p;;l'):l =5 L [s4(1) — s5(0)]* de (11.5-3a)
2 T T T
= ; [J; si(e) de + L s3n de =2 J s;(0sy(0) de - (11.5-3b)
o
2
= ;' ‘E!I 1 Ell - 25.:2) (1 '5-3()

Here E,, and E,; are the energies, respectively, in s,(r) and s,(z), while E_,, is the

cnergy due to the correlation between s,(r) and s,(1).
Supposc that we have selected s5,(r), and let s,(z) have an energy E_, . Then it
can be shown that if s,(¢) is to have the same energy, the optimum choice of s,(t)

1s

5y(t) = —s,(1) (11.5-4)
The choice is optimum in that it yields a maximum output signal p3(7) for a
given signal energy. Letting s,(r) = — s,(r), we find

Ey=Ey=—E,=E,

and Eq. (11.5-3¢) becomes
T 8E
[ﬁ‘_)] - 2B (11.5-5)

2
%, n

Rewriting Eq. (11.3-4b) using p(T) = s,,(T) — 5,,(T), we have

sl -pUT) |2 pATY]"?
P,= 2crfc [2\/5 a,,] =3 crfc[ 807 ] (11.5-6)

Combining Eq. (11.5-6) with (11.5-5), we find that the minimum error probability
(P )i corresponding to a maximum value of pX(T)/al is

I I[pd(T) VA
. =" ~ o (o 7
(P rmin Zcrfc { “[ e ]."} (11.5-7)
172
- % erfc (%) (11.5-8)

We note that Eq. (11.5-8) establishes more generaliy the idea that the error
probability depends only on the signal energy and not on thec signal waveshape.
Previously we had established this point only for signals which had constant

voltage levels.
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We note also that Eq. (11.5-8) gives (FP_),,,,, for the case of the matched filter
and when s,(r) = —s.{t). In Scc. 11.2 we considered the casec when s5,(t) = + V
and s.(r) = — V and the flter emploved was an inlcgralor_'. Th.erc we found
[Eq- (11.2-3)] that the result for P_ was identical with {P_),.;. given in Eq. (11.5-8).
This agreement leads us to suspect that for an input signal where s,(r) = + V and

£,(1) = — V' the integrator i1s the matched filter. Such is indced the case, For when
we have

si(=V 0<t<T (11.5-9a)

50 =—-V 0<stsT (11.5-9h)

the impulse response of the matched filter is, from Eq. (11.4-4),

hir) = ZTK ST — 1) — 5T —1)] (11.5-10)

The quantity s, (T — 1) — 5,(T — r) is a pulse of amplitude 2V extending from
t = 0Otor =T and may be rewritten, with z(r) the unit step.

mn-=27"¢zn[«m>—u(x—r)] (1L5-11)

The constant factor of proportionality 4K V /5y in the expression for h(r) (that is,
the gain of the filter) has no effect on the probability of error since _lhc gain affects
signal and noise alike. We may thercfore sclect the cocefficient K in Eq. (11.5-11)
so that 4K V/n = 1. Then the inverse transform of k(r). that is, the transfer func-
tion of the filter, becomes, with s the Laplace transform variable,

—aT

{11.5-12)

1 e
Hiz) =— —
]

The first term in Eq. (11.5-12) represents an intcgration beginning at ¢ = 0,
while the second term represents an integration with reversed polarity beginning
at ¢+ = T. The overall response of the matched filter is an integration from 7 = 0
te r= T and a zero response thereafter. In a physical system, as already
described. we achieve the effect of a zcro response after ¢ = T by sampling at
t = T. so that so far as the dctermination of one bit is concerned we ignore the
responsc after r = 7T,

COHERENT RECEPTION: CORRELATION:

We discuss now an alternative type of receiving system which, as we shall see, is
identical in performance with the matched filter receiver. Again, as shown in
Fig. 11.6-1, the input is a binary data waveform 34(7) or s;(r) corrupted by noise
n(r). The bit length is 7. The received signal plus noise vAe) is multiplied by a
locally generated waveform s,(r) — 5,(7). The output of the multiplier is passed
through an integrator whose output is sampled at ¢ — 7. As before, immediately
after each sampling, at the beginning of each new bit interval, all energy-storing
clements in the integrator are discharged. This type of rcceiver is called a correla-
7or, since we are correlating the received signal and noise with the waveform s,.(1)
— s(r)
The output signal and noise of the correlator shown in Fig. 11.6-1 are

T
SAT) = > SAt)s (0) — s45(1)] dt
o (11.6-1)
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T
n(T) = % J; n(t)s,(1) — s,(e)] dt
(11.6-2)

Where sy(t) is either si(t) or so(t),and wthere 7 is the constant of the integrator(i.e.,the integrator
output is 1/ times the integral of its input).we now compare these outputs with the matched filter

outputs.

Local signal
s (1)~ 110)
Input il
s {+n(t) () /\ s (TH olT
v (f) = { , —aed Integrator = il -ulT)
-,(lHn(l) ol AKS.:N*T A.:(THn.lT)
[ 7% — S—
Correlator

Fig:11.6-1 Coherent system of signal reception

I h(t) is the impulsive response of the matched filter ,then the output of the matched filter vo(t) can
be found using the convolution integral. we have

o0 T
() = J vt — A) di = J' vl A)h(t — 2) di
b (11.6-3)

The limits on the integral have been charged to 0 and T since we are interested in the filter response
to a bit which extends only over that interval. Using Eq.(11.4-4) which gives h(t) for the matched

filter, we have
2K
h(t) = T [S,(T - 1) — SZ(T — f)]

(11.6-4)
h A i) 2K (T A) (T A)
so that e L) = — [& -4 )= —t44
A= L * ] (11.6-5)
sub 11.6-5in 11.6-3
S REPT
v(r) = % | PAANS AT —t 4+ A — sAT —t + 2)] dA (11.6-6)
JO
Since v{A) = 5{2) + n(2), and v,(t) = s,(t) + n,(1), setting t = T yields
2K (T
5AT) = % sAA)s (A) — 52(2)] d2
" (11.6-7)
where s{2) is equal to s5,(4) or 5,(4). Similarly we find that
7} G )
n(T) = —"- n(A)[s,(4) — s,(4)] di
JO
(11.6-8)

Thus so(T) and no(T), as calculated from eqgs.(11.6-1) and (11.6-2) for the correlation receiver, and
as calculated from egs.(11.6-7) and (11.6-8) for the matched filter receiver, are identical .hence the
performances of the two systems are identical. The matched filter and the correlator are not simply
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two distinct, independent techniques which happens to yield the same result. In fact they are two
techniques of synthesizing the optimum filter h(t)
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5.13&&?0{ Probability of ASK
Amplitude Shift Keying (ASK), some number of carrier cycles are transmitted to
send ‘1" and no signal is transmitted for binary '0". Thus,

Binary 'I' = x,(f) = 2P, cos(2nfyf) and

Binary '0' = x;(f) = 0 (ie. no signal) w (5.13.1)

2
Here F; is the normalized power of the signal in 1Q load. ie. power P, =-42-.

Hence A=\/2P,. Therefore in above equation for x; (t) amplitude ‘A’ is replaced by
o
v2k;.
We know that the probability of error of the optimum filter is given as,
P, = % erfe { Xg1 (T) - xq (T) } - (5.132)

2\'50

Here

Swi (f)

The above equations can be applied to matched filter when we consider white
Gaussian noise. The power spectral density of white Gaussian noise is given as,

Ny
2

[rm U‘);xm m]’ . [ XOE

—

Sul (f) -

Putting this value of S, (f) in above equations we get,

[ M-xe M) FIXOR
e PO b
2
- 2
= ml;x(f); df . (5.13.3)

Parseval's power theorem states that,
JIX(DPdf = [x2(@mar

Hence equation 5.13.3 becomes,
X0 (D) - 22 O]

a

-2 7.2
—N;Ix(t)dt

max
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We know that x(f) is present from 0 to T. Hence limits in above equation can be
changed as follows :

[Im (T)-xg2 DT

xZ () dt . (5.134)
o

1
No

O’—c"i

max

We know that x(¢) = x; (f) — x5 (f). For ASK x; (f) is zero, hence x(f) = x; (f). Hence
above equation becomes,

2 T
[ X0 (T);xca (T)] - Tz‘jxf (f) dt
X '

Putting equation of x (f) from equation 5.13.1 in above equation we get,

- 2 i 4

{xp (1) =xg2 (T)] . 2 e :

}. = Jm‘ ko j [\ZP‘ cos(Zn,f(.r)] dt
0

7
- i& I COS2 (23{0 £) dt
.\0 0 )

T

————. Here applying this formula to cos?® (2xfp?) we get,

—

We know that cos?2 8=

oS
2

[.rm (T) - xp2 M7’ 4P, } 1+ «»-mfor
0

| 1Y | -
(8] | S— N Q

T T
= 4{-)’— %ﬂlj' j os-hgfgtdtl
M ".0 Q ]
[iin‘ﬂfjf]1.
- —“‘[ Jo + [T;OL
' 2P, .. sindnfyT i
= { T+ S (5.135)

We know that T is the bit period and in this one bit period, the carrier has integer
number of cycles. Thus the product f; T is an integer. This is illustrated in Fig. 5.13.1
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1/

8 Fig. 5.13.1 In one bit period T, the
carrier completes Its two cycles, The

carrier has frequency f,. From figure we can

[’
>" -.

|
! ’
VARV L
E fo Jo
i i - . 7 2
= - Ttk
panod o fo = 2 (integer no. of cycles)

As shown in above figure, the carrier completes two cycles in one bit duration.
Hence

HT =2
Therefore, in general if carrier completes k' number of cycles, then,

foT = k (Here k is an integer)
Therefore the sine term in equation 5.13.5 becomes, sindnk and k is integer.
For all integer values of k, sin 4=k « 0. Hence equation 5.13.5 becomes,

[ xg1 (T) = x¢0 (N ]? 2P, T
= .. (5.13.6
= L= b (5.13.6)
Xy (T) = xgp (T)] . (3BT 5.13
[ o - m._‘ \‘ ND - ( ) .7)

Putting this value in equation 5.132 we get error probability of ASK using
matched filter detection as,

1 .11 RETI 1 BT
P = Oty fls } =iy orfe..[la
S T 1\2\.2 V No j 2 f‘\-mo

Here P, T =E i.e. energy of one bit hence above equation becomes,

Error probability of ASK : P, = 2 erfe \'U\L'o - (5.13.8)

This is the expression for error probability of ASK using matched filter detection.
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Error Probability of Binary FSK

The observation vector x has two elements x; and x, that are defined by, respectively,

.

X = L x(t)p,(t) dt (6.92)
T}

x = | x()ga(0) d (6.9

where x(t) is the reccived signal, the form of which depends on which symbol was trans
mitted. Given that symbol 1 was transmitted, x(t) equals s,(¢) + w(t), where w(t) 18 the
sample function of a white Gaussian noise process of zero mean and power spectral density
No/2. If, on the other hand, symbal 0 was transmitted, x(£) equa_ls sa(t) + _tv[ﬂ: Il
Now, applying the decision rule of Equation (5.59), we find that the obsel'fﬂ%if;
space is partitioned into two decision regions, labeled Z, and Z, in Figure 62.2:-. .
decision boundary, separating region Z, from region Z; is the perpendicular bisector

the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z,. This
occurs when x; > x,. If, on the other hand, we have x; < x,, the received signal point
falls inside region Z,, and the receiver decides in favor of symbol 0. On the decision
boundary, we have x; = x,, in which case the receiver makes a random guess in favor of
symbol 1 or 0.

Define a new Gaussian random variable Y whose sample value y is equal to the
difference between x,; and x,; that is, '

y =% =X (6.94)

The mean value of the random variable Y depends on which binary symbol was trans-
mitted. Given that symbol 1 was transmitted, the Gaussian random variables X, and X,
whose sample values are denoted by x, and x,, have mean values equal to VE,, and zero,

respectively. Correspondingly, the conditional mean of the random variable Y, given that
symbol 1 was transmitted, is

E[Y|1] = E[X,|1] - E[X,!1]
- SN (6.95)

On the other hand, given that symbol 0 was transmitted, the random variables X, and X,
have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the random variable Y, given that symbol 0 was transmitted, is
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E[Y|0] = E[X,|0] — E[X.|0]
6.96
- —VE, L
The variance of the random variable Y is independent of which binary symbol was trans-

mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that

var[Y] = var[X;] + var[X,]

Suppose we know that symbol 0 was transmitted. The conditional probability density
function of the random variable Y is then given by

fr(y]|0) = 1 e [_—()’ T \/E;)Z]
M V2N, P 2N,

(6.97)

(6.98)

Since the condition x, > x;, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error, given
that symbol 0 was transmitted, is

P10 = P(y > 0|symbol 0 was sent)

= [ fuiylo) dy (6.99)

& fwex [—(y+\/§b)2:|d
\/Z’FN() 0 4 2-NO g

W =2 (6.100)

Then, changing the variable of integration from y to z, we may rewrite Equation (6.99)
as follows:

il —2) d
Pro = V}.L/‘E,,/‘ZNO RXpl-£0) 0

o (6.101)
L erfc( f—b )
2 V2N,

Similarly, we may show the poy, the conditional probability of error given that SY{nbOI 1
was transmitted, has the same value as in Equation (6.101). A_ccordmgly, averaging p,
and po;, we find that the average probability of bit error or, equivalently, the bit error rg,
for coberent binary FSK is (assuming equiprobable symbols)
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Lol [Bo
P=5 erfc(\iju) (6.102)

Comparing Equations (6.20) and (6.102), we sec that, in a coherent binary FSg
system, we have to double the bit energy-to-noise density ratio, E,/Ng, to maintain the
same bit error rate as in a coherent binary PSK system. This result is in perfect accord with
the signal-space diagrams of Figures 6.3 and 6.25, where we see that in a binary PSK
system the Euclidean distance between the two message points is equal to 2VE;, whereas
in a binary FSK system the corresponding distance is \/2E,. For 2 prescribed E,, the
minimum distance d,.;, in binary PSK is therefore \/2 times that in binary FSK. Recall
from Chapter 5 that the probability of error decreases exponentially as d7,,, hence the
difference between the formulas of Equations (6.20) and (6.102).

Error Probability of QPSK
In a coherent QPSK system, the received signal x(t) is defined by
0=¢t=T

x(t) = s;(t) + wit), {‘_ w5 B (6.28)

where w(t) is the sample function of a white Gaussian noise process of zero mean and
power spectral density No/2. Correspondingly, the observation vector x has two elements,
x, and x,, defined by

T
Xy = L x(t)d)-l(t) dt

<N/ E cos[(Zi ~ 1) "ﬂ + w (6.29)
= x /"F:' + w4
V2
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rT

x; = Jo x(t)cpo(t) dt
= -VE sin[(Zi - 1) %r] + w; (6.30)

[E

=-T-v?+w2

Thus the observable elements x; and x, are sample values of independent Gaussian random
variables with mean values equal to +V/E/2 and ¥VE/2, respectively, and with a common
variance equal to Ny/2.

The decision rule is now simply to decide that s;(¢) was transmitted if the received
signal point associated with the observation vector x falls inside region Z,, decide that
s2(t) was transmitted if the received signal point falls inside region Z,, and so on. An
erroneous decision will be made if, for example, signal s4(2) is transmitted but the noise
w(t) is such that the received signal point falls outside region Z,.

To calculate the average probability of symbol error, we note from Equation (6.24]
that a coherent QPSK system is in fact equivalent to two coherent binary PSK systems
working in parallel and using two carriers that are in phase quadrature; this is merely a
statement of the quadrature-carrier multiplexing property of coherent QPSK. The in-phase
channel output x; and the quadrature channel output x, (ie., the two elements of the
observation vector X) may be viewed as the individual outputs of the two coherent binary
PSK systems. Thus, according to Equations (6.29) and (6.30), these two binary PSK sys-
tems may be characterized as follows:

» The signal energy per bit is E/2.
» The noise spectral density is Ny/2.

Hence, using Equation (6.20) for the average probability of bit error of a coherent binary
PSK system, we may now state that the average probability of bit error in eack channel of
the coherent QPSK system is

Lo B2
P = erfc(\/ No)
: fE- (6.31)

=35 erfc(\!'ZNo)

[ ¥
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Another important point to note is that the bit errors in the in-phase and quadrature
channels of the coherent QPSK system are statistically independent. The in-phase channel
makes a decision on one of the two bits constituting a symbol (dibit) of the QPSK signal,
and the quadrature channel takes care of the other bit. Accordingly, the average probability
of a correct decision resulting from the combined action of the two channels working
together is

P.=(1-P)
=\ 2
1 E
- [1 - Eerfc( Z_No)] (6.32)

- ) Lo D

The average probability of symbol error for coherent QPSK is therefore

P,=1-P

BN 1 E (6.33)
= crfc(v,}z—No) -2 erfcz(\/;\To)

In the region where (E/2Ny) => 1, we may ignore the quadratic term on the right.},and
side of Equation (6.33), so we approximate the formula for the average probability of
symbol error for coherent QPSK as

[E
P, = erfc(¢2—NO) (6.34)

The formula of Equation (6.34) may also be derived in another insight'ful way, using
the signal-space diagram of Figure 6.6. Since the four message poir?ts of this diagram ape
circularly symmetric with respect to the origin, we may apply Equation (5.92), reproduced
here in the form

, dw) ,
< - f for all 6.3
P, = > Zl er c(2 N or all (6.35)
fegi

Consider, for example, message point 7, (corresponding to dibit 10) cho§ep as the trans-
mitted message point. The message points 7, and 71, (corresponding to dibits 00 and 11)
are the closest to n1,. From Figure 6.6 we readily find that 7, is equidistant from m, and
m, in a Euclidean sense, as shown by

d12 - d14 = \/ﬁ
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Assuming that E/Nj is large enough to ignore the contribution ot the most distant message
point #15 (corresponding to dibit 01) relative to 1., we find that the use of Equation (6.35)
vields an approximate expression for P, that is the same as Equation (6.34). Note that in
mistaking either 1, or 7, for my, a single bit error is made; on the other hand, in mistaking
m for my, two bit errors are made. For a high enough E/N, the likelihood of both bits
of a symbol being in error is much less than a single bit, which is a further justification
for ignoring m; in calculating P, when 1, is sent. HHEHL 1

In a QPSK system, we note that since there are two bits per symbol, the transmutted

signal energy per symbol is twice the signal energy per bit, as shown by

Thus expressing the average probability of symbol error in terms of the ratio E,/Ng, we

may write
[E,
Y b 6.37)
P, erfc( V, N, (

With Gray encoding used for the incoming symbols, we find from Equations (6.31]
and (6.36) that the bit error rate of QPSK is exactly

. /_. 38)
=5 1 E, (6.
BER erfc( ’o)

We may therefore state that a coherent QPSK system achieves the same average probabiy
of bit error as a coherent binary PSK system for the same bit rate and the same Es/ I“g’
but uses only half the channel bandwidth. Stated in a different way, for the same Ex/No
and therefore the same average probability of bit error, a coherent QPSK system transmits
information at twice the bit rate of a coherent binary PSK system for the same channé

bandwidth. For a prescribed performance, QPSK uses channel bandwidth better than bi-
nary PSK, which explains the preferred use of QPSK over binary PSK in practice.

ERROR PROBABILITY OF BINARY PSK:

To realize a rule for making a decision in favor of symbol 1 or symbol 0,we partition the signal
space into two regions:

> The set of points closest to message point 1 at +VE;.
& The set of points closest to message point 2 at =V E,.
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This is accomplished by constructing the midpoint of the line joining these two message
points, and then marking off the appropriate decision regions. In Figure 6.3 these decision
regions are marked Z, and Z;, according to the message point around which they are
constructed.

The decision rule is now simply to decide that signal s,(¢) (i.., binary symbol 1) was
transmitted if the received signal point falls in region Z,, and decide that signal s (¢) (i.e.,
binary symbol 0) was transmitted if the received signal point falls in region Z,. Two kinds
of erroneous decisions may, however, be'made. Signal s,(¢) is transmitted, but the noise is
such that the received signal point falls inside region Z, and so the receiver decides in favor
of signal s,(t). Alternatively, signal s,(f) is transmitted, but the noise is such that the re-
ceived signal point falls inside region Z, and so the receiver decides in favor of signal s.(z).

To calculate the probability of making an error of the first kind, we note from Figure
6.3 that the decision region associated with symbol 1 or signal s,(¢) is described by

where the observable element x, is related to the received signal x(t) by

T,
Xy =j x(2)dby(t) dt (6.15)
0

The conditional probability density function of random variable X, given that symbol 0
[i.e., signal s,(2)] was transmitted, is defined by

1 [yt
Fx, (%) ]0) = —\/_'n'T_' €xXp —N; (1 — 521)2]
: Vi [ : (6.16)
= \/ﬂ'_No epr-lvo (% + \/E—b)z]

The conditional probability of the receiver deciding in favor of symbol 1, given that symbol
0 was transmitted, is therefore

po= |, frlxl0) de

1 1 1
= \/w_NOL exp[-—ﬁo (2, + \/E_b)z] dx,

(6.17)
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Putting

1
z= ‘\,'—E (2, + \/E_bj (6.18)

and changing the variable of integration from x, to z, we may rewrite Equation (6.17) in
the compact form

N
Plo—\/;VWCXp 7)) dz

E. (6.19)
= 1 fc( ,’ b)
2 * \( No

where erfc(-) is the complementary error function.
Thus, averaging the conditional error probabilities pyo and Po;, We Iind that the
average probability of symbol error or, equivalently, the bit error rate for coberent binary
PSK is (assuming equiprobable symbols)

P. = = erfc(\‘@:) (6.20)

As we increase the transmitted signal energy per bit, E;, tor a specihed noise spectey|
density N, the message points corresponding to symbols 1 ar}d 0 move furthefr apart, and
the average probability of error P, is correspondingly reduced in accordance with Equatiop
(6.20), which is intuitively satisfying.
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